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DATA-INTENSIVE SCIENTIFIC SERVICES
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Transient data services allocated 

on demand to provide domain-

specific functionality and 

semantics

� Use in-system storage devices

� Overlap with application resources in 

some cases

� Provision appropriate resources for 

the task at hand

� Supplement, not replace, 

conventional “global” file system

� Blue: applications

� Yellow: transient data services

� Red: persistent global file system
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DataSpaces

Data store and pub/sub.
Indep. job Dart

RAM

(SSD)

Under 

devel.
N/A

DataWarp

Burst buffer mgmt.
Admin./

sched.

DVS/

lnet
SSD

Ext. 

monitor

Kernel,

lnet

FTI

Checkpoint/restart mgmt.
MPI ranks MPI RAM, SSD N/A N/A

Kelpie

Dist. in-mem. key/val store
MPI ranks Nessie

RAM

(Object)
N/A

Obfusc.

IDs

HDFS *

Dist. file system for MapReduce
EMR or 

similar
TCP/IP Disk, SSD Zookeeper

Key 

encryption

Spark *

Data processing
EMR or 

similar
TCP/IP RAM Zookeeper

Key 

encryption

Specialized data services

are already here!

Examples from HPC and 

cloud environments

* Persistent services such as HDFS, Spark, and others can be provisioned on-demand in cloud environments



WHAT’S NEXT?
The evolution of data-intensive scientific services
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� Support emerging hardware

– NVM (byte-addressible non-volatile memory) to accelerate data access

– See Aurora (ANL), Summit (ORNL), and others

� Lower the barrier to entry

– Avoid building new services from the ground up

– Reuse existing toolkit/framework/library for critical functionality 

– “Microservice” model: lightweight composable building block services

– Performance portability

� Example microservices: key/value storage, object storage, group membership, 

replication, namespace management

� Example composed scientific service: “Genomics Query Service”



CASE STUDY:

AN OBJECT STORAGE MICROSERVICE



GOAL
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� Why not just use local NVM devices through local APIs?

– Ability to share data across tasks or ensembles

– Support imbalanced workloads

– NVM devices may not be present on every node

� Challenges for remotely accessible object storage service:

– High concurrency is the norm (thousands of application processes)

– Network portability for big data and HPC environments

– Latency (software overheads won’t be masked by slow disks)

– Being a “friendly neighbor” to co-located applications and services

Low-latency, high-throughput access to distributed NVM, using an 
object storage API, that embodies the microservice concept for data-
intensive science



COMPONENTS USED IN PROTOTYPE*
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� Local NVM access: libpmemobj (Intel)

– Object abstraction for local NVM access 

� Network abstraction: Common Communication Interface (ORNL)

– High-performance network abstraction with concise primitives

� RPCs: Mercury (HDF Group and ANL)

– HPC-oriented RPC framework with RDMA path for data

� Concurrency: Argobots (ANL)

– User-level threading and tasking

� Bindings: Margo and abt-snoozer (ANL)

– Maps communication to threads with custom scheduling

*See URLs for source code at end of presentation



� Put services in charge of coordinating the following at shared resource 

(contention) points:

– Flow control and memory consumption

– Coherency

– Staging to/from slower storage tiers

– Access rights

� To accomplish this:

– Clients initiate access using explicit RPCs

– Servers drive payload transfers with RDMA

– Can we still get reasonably low latency with this model?

� Trade off latency for ability to optimize concurrent access

CHALLENGE: HIGH CONCURRENCY
How do we avoid overwhelming services under large-scale,
highly-concurrent workloads?
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RPC req

RPC ack

RDMA

payload

clients server

NVM



CHALLENGE: NETWORK PORTABILITY

� Anecdote: Argonne (ALCF) machine room has production systems with the 

following transports and fabric:

– TCP/IP (Ethernet)

– Verbs (multistage InfiniBand)

– uGNI (dragonfly)

– PAMI (torus)

� Can’t afford to tune all the way to metal while supporting wide range of big data 

and HPC deployments

� Mercury RPC API is network agnostic, provides RDMA path for bulk data transfer

– RDMA is emulated on networks that don’t support it

� CCI communication library (used within Mercury as an optional transport) 

supports TCP, Verbs, uGNI, shared memory, and others

Can we support a variety of networks effectively?
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CHALLENGE: LATENCY

� All threads are user-level threads implemented by Argobots

– Spawn with low overhead (for incoming requests) 

– Schedule and context switch cooperatively (when blocked on I/O resources)

– No OS-level context switching

� Make path from network to storage as direct as possible

– Server drives RDMA directly to libpmemobj regions when appropriate

– Memory copy is more efficient than memory registration in some cases, 

though.  More on this later.

� Avoid extraneous serialization by eschewing POSIX semantics and name-space 

rules when they aren’t needed

How do we prevent software from becoming the bottleneck for high-
performance storage devices?
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CHALLENGE: FRIENDLY CO-LOCATION

� No busy-spinning (at least by default) for network events; requires considerations 

within multiple components:

– CCI exposes file descriptor to block callers until events are ready

– Mercury decouples event management from network “progress”

– Abt-snoozer scheduler for Argobots gracefully idles (but resumes promptly) 

when all threads are blocked on I/O

� Constrain CPU core usage

– Argobots allows fine grained control of which threads and taskets execute on 

which cores (execution streams)
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How do we minimize interference when microservices run on the 
same node as an application?



EVALUATION:

WHAT KIND OF PERFORMANCE CAN WE 

ACHIEVE UNDER THESE CONSTRAINTS?



PERFORMANCE MEASUREMENT
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� Prototype API model is similar to libpmemobj, but tailored for remote access:

– Explicit reads and writes rather than load/store access 

– Allow concurrent access to objects from many clients simultaneously

– No transaction grouping

� Benchmarks:

– Create new plugin for IOR (HPC concurrent I/O benchmark) to read and 

write to distributed objects rather than files

– Create custom microbenchmark for access latency

• Measure latency of a sequential set of write or read operations

• Does not persist on write



THE TESTBED
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� 126 Linux nodes, each with 12 Haswell CPU cores

� FDR InfiniBand fabric with multistage switch

� 384 GiB RAM per node (used to emulate NVM in these experiments)

Cooley cluster at ALCF



PUTTING THE COMPONENTS TOGETHER
A prototype object storage service architecture
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ACCESS LATENCY
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� Components are “thin”: no context 

switches or extra memory copies 

� Recall that there is no busy polling

� Each access is at least one network round 

trip, one libpmem access, and one new 

thread
Protocol modes:

� Eager mode, data is packed into 

RPC msg

� Data is copied to/from pre-registered 

RDMA buffers

� RDMA “in place” by registering 

memory on demand

Crossover points would be different 

depending on transport

How much latency do those
software layers add?



ACCESS LATENCY
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Observations and questions

� Single digit microsecond access latencies, but could it be tuned further?

– Consider adaptive polling

– Optimize memory allocation

� What about the long tail?

– Previous slide shows confidence interval for 10,000 samples at each point, 

and the intervals are quite narrow

– But outliers are present: one of the noop samples was > 70 microseconds

� The cost of memory copy vs. registration is a key factor in choosing protocol 

crossover points



AGGREGATE BANDWIDTH
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� 8 server nodes, with one service daemon 

per node

� 2 to 16 client nodes, with 12 application 

processes per node (one per core)

� Grey line is projected maximum

� Blue line is normal, random allocation

– Whiskers (min and max) have 

significant variance

� Green line is special allocation with all 

nodes on one leaf switch

– Whiskers (min and max) have very 

little variance



AGGREGATE BANDWIDTH
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Observations and questions

� InfiniBand switches are not true crossbars, no matter how much us computer 

scientists would like them to be

– Consider switch routing and congestion-avoidance algorithms?

– Would better internal service instrumentation help?

– Are we going to observe similar phenomena on other networks?

� The service can saturate bandwidth aggregate bandwidth relatively easily

� No drop-off up to 192 application processes accessing 8 daemons

– What if we scale higher?

� What about a real scientific application?



CONCLUSIONS AND FUTURE WORK



WHAT’S NEXT?
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� Initial results are encouraging

� Continue tuning and developing best practices

– Investigate performance outliers

– Isolate latency costs

� What can be done to further evaluate concept?

– Real applications

– Larger scale

– More architectures

– Real NVM hardware

– Stage in and out to long term storage

� Update microservice model to allow remote or local access under consistent API

� Continue to leverage new techniques from the community



AVAILABLE CODE
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Key components are already open-sourced under permissive licenses

� CCI: https://github.com/CCI/cci

– Network abstraction

� Mercury: https://mercury-hpc.github.io

– RPC framework

� Argobots: https://github.com/pmodels/argobots

– User-level threading

� Margo: https://xgitlab.cels.anl.gov/sds/margo

– Mercury/Argobots bindings

� Abt-snoozer: https://xgitlab.cels.anl.gov/sds/abt-snoozer/

– Argobots I/O-aware scheduler



www.anl.gov
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BASELINE PERFORMANCE
How did we come up with projected bandwidth and access latency 
values?
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� We used mpptest benchmark 

atop the MVAPICH MPI 

implementation to gather 

baseline numbers

� 5.9 GiB/s max bandwidth and 

2.6 microsecond min round-trip 

latency with two-sided 

asynchronous messaging


