-ast Databases with Fast
Durability and Recovery
Through Multicore Parallelism

Wenting Zheng, Stephen Tu (MIT/UC Berkeley)
Eddie Kohler (Harvard), Barbara Liskov (MIT)

Votivation

* In-memory databases are popular

e extremely fast transaction
processing

e \VoltDB, MemSQL, etc.

Votivation

* In-memory databases are popular

e extremely fast transaction
processing

e \VoltDB, MemSQL, etc.

Potential weakness: durability!

Need a persistence system with

small performance impact on runtime
throughput and latency

and

recovery of a big database in a few
minutes

for a fast, multicore, iIn-memory database

Challenges

e Avolid Interference with
transaction execution

Challenges

e Avolid Interference with
transaction execution

* ast recovery

e serial recovery takes too long

e parallel recovery constrains

l0gging and checkpointing
designs

Solution

* SiloR provides persistence for Silo
(SOSP '13)

* l0gging, checkpointing, recovery
using disks

Solution

* SiloR provides persistence for Silo
(SOSP '13)

* l0gging, checkpointing, recovery
using disks

|[DEA: parallelism in all parts of the
system, both runtime and recovery

- Silo Overview
e SiloR Design
* Logging
» Checkpointing
e Recovery
* Evaluation

e Related work

Silo Overview

» Silo is a very high performance in-
memory database

e Workers on different cores execute
transactions on a shared-memory
database

» Optimistic concurrency control
(OCC)

Silo TID and Epochs

Epochs are global time periods
(~40 ms)

Silo TIDs are grouped into epochs
Writes ordered by TIDs

Epochs provide group commit anad
avold contention on global T1D

Epochs are recovery units

e Silo Overview

- SiloR Design
- Logging
» Checkpointing
e Recovery

* Evaluation

e Related work

. 0ggIing
* Operation vs. value logging
e Operation logging: smaller log
size
e Value logging: easier to
parallelize recovery

» SiloR uses value logging

| ogging Parallelism

 Must use multiple disks -
single disk’s IO not enough

* One logger per disk
* Multiple workers for one logger

. 0gQIng structure

T N/

| |

. 0gQIing structure
N

AVARVA
o

|

| 0Qg rotation

| 0g rotation

W W W W
) \ E/ i /)
L L
I I Log file renamed to
old_data.e, where e is
— the largest epoch seen
datalog || = in that particular file.

old_data.e

| 0g rotation

W W W W
) \ E/ i /)
L L
I I Log file renamed to
old_data.e, where e is
— = the largest epoch seen
datalog [] = in that particular file.

old_data.e

Persistence epoch

ep = min {e1, €2, €3, e} - 1

Persistence epoch

ep = min {e1, €2, €3, e} - 1

all transactions in epochs <= ep
are persistent

e Silo Overview

- SiloR Design
* Logging
- Checkpointing
e Recovery

* Evaluation

e Related work

i z iIndex tree
e Parallel mh records
checkpointing ~
* Checkpoint V,V\ /VY < /Vy
happens regularly
' !

L L
L

e [ree walk over a
range of each table -
Inconsistent

checkpoint
* Only committed
records in checkpoint
 Writes out to multiple ///
files, enabling easy
recovery parallelism

Checkpoint

* Checkpoint starts in epoch e

* skips over records with TID.e such that e
>= €L

Checkpoint

* Checkpoint starts in epoch e

* skips over records with TID.e such that e
>= €L

* smaller checkpoints -> smaller log ->
faster recovery

Checkpoint

* Checkpoint starts in epoch e
* skips over records with TID.e such that e
>= e,
* smaller checkpoints -> smaller log ->
faster recovery
* Checkpoint ends in epoch ey
e usable once ey <= ep
* removes old_data.e log file where e < e

e Silo Overview

- SiloR Design
* Logging
» Checkpointing
- Recovery

* Evaluation

e Related work

Recovery parallelism Is easy
because of our
l0ogging ana
checkpointing designs

Checkpoint recovery

Easy parallelism: /
one checkpoint
R R R R R R

recovery

AL VY

| 0g Recovery

* Value logging enables log files to
be played In any order — highest
11D per key wins

| 0Og Recovery

* Value logging enables log files to
be played In any order — highest
11D per key wins
* |0gs In later epochs replayed first

| 0Og Recovery

* Value logging enables log files to
be played In any order — highest
11D per key wins
* |0gs In later epochs replayed first

* No log record from epoch > ep IS
replayea

e Silo Overview

e SiloR Design
* Logging
» Checkpointing
e Recovery

- Evaluation

e Related work

Evaluation

 Experiment setup

* single machine with four 8 core Intel
Xeon E7-4830 processors (32
ohysical cores)

e machine has 256 GB of DRAM, 64
GB of DRAM attached to each socket

e 4 disks: 3 Fusion IO drives, 1 RAID-5
disk array

Fvaluation Goals

e Can SiloR keep up with high
transaction throughput from Silo”

 Does recovery take no more than
a few minutes for a large
database”

Evaluation - YCSB-A

e Key-value benchmark

* 400 million keys, 100 byte
records

* /0% read, 30% write

e 28 workers, 4 loggers, 4
checkpoint threads

e Database does not grow

Evaluation - YCSB-A

__12M
tou pme—

8M
6Mf
am|
2M|

Throughput (txn/s

— SiloR — LogSilo — MemSilo (32 workers)

= 200} |
2 100L

()]

=

—

0 100 200 300 400 500 600
Experiment time (s)

ms)
w
o
o

Avg throughput: 8.76 Mtxns/s, 9.01 Mtxns/s, 10.83 Mtxns/s

Recovery for YCSB-A

Simulates crash right before the
second checkpoint completes

Recovered
database

Checkpoint Log

Size

Recovery
time

Fvaluation - TPC-C

 TPC-C is a popular OLTP
benchmark

¢ 28 workers, 4 loggers, 4
checkpoint threads

* Database size grows very fast
* Checkpoint period also grows

]
g 0.8M¢ : g - -
3 oo ow i B EER TR
Q
f , £ 0.4M}]
>
o
4 E N
l_ L L L L

0.2M
oM oM

— — SiloR = — LogSilo
£ 300 £ 300 ‘ ‘ ‘ ‘ ‘
< 200} > 200]
2 100 g 1 0 bpiomtromtiimegisstserssprnpe e bt arhnbomprtrapmetisiii
(O]) ! ! ‘ ‘ ‘
s 0 200 300 400 600 g % 100 200 300 400 500 600

Experiment time (s) Experiment time (s)

1™

= I MemSilo (28 workers)

0 100 200 300 400 500 600
Experiment time (s)

Avg throughput: 548 Ktxns/s, 575 Ktxns/s, 592 Ktxns/s

Recovery for TPC-C

Simulates crash right before the
fourth checkpoint completes

Recovered
tuples

Size

Checkpoint

Log

195.7 GB

Recovery
time

17 S

194 s

211s

Evaluation conclusion

high transaction

Can SiloR keep up with D
throughput from Silo”

Does recovery take no
more than a few minutes D
for a large database”

Evaluation conclusion

high transaction

Can SiloR keep up with [:J
throughput from Silo”

Does recovery take no
more than a few minutes l l
for a large database”

e Silo Overview

e SiloR Design
* Logging
» Checkpointing
e Recovery

* Evaluation

- Related work

Related work (partial list)

* VoltDB OLTP Recovery using
command logging (ICDE "14);
operation logging advantages

* Recovery on RAMCloud (SOSP '11):
really fast recovery

e Fast checkpoint recovery on frequently
consistent applications (SIGMOD '11)

Conclusion

* Built a persistence system for a very
fast multicore in-memory database

 Used parallelism in all parts of the
system to enable

 small degradation in runtime
performance

* recovery of large database in a few
minutes

Questions?

