
Fast Databases with Fast
Durability and Recovery

Through Multicore Parallelism

Wenting Zheng, Stephen Tu (MIT/UC Berkeley)
Eddie Kohler (Harvard), Barbara Liskov (MIT)

Motivation
• In-memory databases are popular

• extremely fast transaction
processing

• VoltDB, MemSQL, etc. 
 

Replication may not be enough

Motivation
• In-memory databases are popular

• extremely fast transaction
processing

• VoltDB, MemSQL, etc. 
 

Replication may not be enough
Potential weakness: durability!

Need a persistence system with
!

small performance impact on runtime
throughput and latency

and
recovery of a big database in a few

minutes!
!

for a fast, multicore, in-memory database

Challenges
• Avoid interference with

transaction execution
• Fast recovery

• serial recovery takes too long
• parallel recovery constrains

logging and checkpointing
designs

Challenges
• Avoid interference with

transaction execution
• Fast recovery

• serial recovery takes too long
• parallel recovery constrains

logging and checkpointing
designs

Solution
• SiloR provides persistence for Silo

(SOSP ’13)
• logging, checkpointing, recovery

using disks
 

IDEA: parallelism in all parts of the
system, both runtime and recovery

Solution
• SiloR provides persistence for Silo

(SOSP ’13)
• logging, checkpointing, recovery

using disks
 

IDEA: parallelism in all parts of the
system, both runtime and recovery

• Silo Overview!
• SiloR Design

• Logging
• Checkpointing
• Recovery

• Evaluation
• Related work

Silo Overview
• Silo is a very high performance in-

memory database
• Workers on different cores execute

transactions on a shared-memory
database

• Optimistic concurrency control
(OCC)

Silo TID and Epochs
• Epochs are global time periods

(~40 ms)
• Silo TIDs are grouped into epochs
• Writes ordered by TIDs
• Epochs provide group commit and

avoid contention on global TID
• Epochs are recovery units

• Silo Overview
• SiloR Design!

• Logging!
• Checkpointing
• Recovery

• Evaluation
• Related work

Logging
• Operation vs. value logging

• Operation logging: smaller log
size

• Value logging: easier to
parallelize recovery

• SiloR uses value logging

Logging Parallelism
• Must use multiple disks -

single disk’s IO not enough
• One logger per disk
• Multiple workers for one logger

Logging structure
W W W W

L L

Logging structure
W W W W

L L

data.log

Log rotation
W W W W

L L

Log rotation
W W W W

L L

Log file renamed to
old_data.e, where e is
the largest epoch seen
in that particular file.

old_data.e

data.log

Log rotation
W W W W

L L

Log file renamed to
old_data.e, where e is
the largest epoch seen
in that particular file.

old_data.e

data.log

Persistence epoch
W W W W

L L

e1 e2 e3 e4

eP = min {e1, e2, e3, e4} - 1
!

all transactions in epochs < eP
are persistent

Persistence epoch
W W W W

L L

e1 e2 e3 e4

eP = min {e1, e2, e3, e4} - 1
!

all transactions in epochs <= eP
are persistent

• Silo Overview
• SiloR Design!

• Logging
• Checkpointing!
• Recovery

• Evaluation
• Related work

• Parallel
checkpointing

• Checkpoint
happens regularly

records

index tree

W W W W

L LC C

• Tree walk over a
range of each table -
inconsistent
checkpoint

• Only committed
records in checkpoint

• Writes out to multiple
files, enabling easy
recovery parallelism

C

Checkpoint
• Checkpoint starts in epoch eL

• skips over records with TID.e such that e
>= eL!

• smaller checkpoints -> smaller log ->
faster recovery

• Checkpoint ends in epoch eH!
• waits until eH >= eP
• removes old_data.e log file where e < eL

Checkpoint
• Checkpoint starts in epoch eL

• skips over records with TID.e such that e
>= eL!

• smaller checkpoints -> smaller log ->
faster recovery

• Checkpoint ends in epoch eH!
• waits until eH >= eP
• removes old_data.e log file where e < eL

Checkpoint
• Checkpoint starts in epoch eL

• skips over records with TID.e such that e
>= eL!

• smaller checkpoints -> smaller log ->
faster recovery

• Checkpoint ends in epoch eH!
• usable once eH <= eP
• removes old_data.e log file where e < eL

• Silo Overview
• SiloR Design!

• Logging
• Checkpointing
• Recovery!

• Evaluation
• Related work

Recovery parallelism is easy
because of our

logging and
checkpointing designs

RR R RR R

Checkpoint recovery

Easy parallelism:
one checkpoint

recovery
thread per file

Log Recovery
• Value logging enables log files to

be played in any order — highest
TID per key wins
• Logs in later epochs replayed

first
• No log record from epoch > ep is

replayed

Log Recovery
• Value logging enables log files to

be played in any order — highest
TID per key wins
• logs in later epochs replayed first

• No log record from epoch > ep is
replayed

Log Recovery
• Value logging enables log files to

be played in any order — highest
TID per key wins
• logs in later epochs replayed first  

• No log record from epoch > ep is
replayed

• Silo Overview
• SiloR Design

• Logging
• Checkpointing
• Recovery

• Evaluation!
• Related work

Evaluation
• Experiment setup

• single machine with four 8 core Intel
Xeon E7-4830 processors (32
physical cores)

• machine has 256 GB of DRAM, 64
GB of DRAM attached to each socket

• 4 disks: 3 Fusion IO drives, 1 RAID-5
disk array

Evaluation Goals
• Can SiloR keep up with high

transaction throughput from Silo?
• Does recovery take no more than

a few minutes for a large
database?

Evaluation - YCSB-A
• Key-value benchmark
• 400 million keys, 100 byte

records
• 70% read, 30% write
• 28 workers, 4 loggers, 4

checkpoint threads
• Database does not grow

Evaluation - YCSB-A

Avg throughput: 8.76 Mtxns/s, 9.01 Mtxns/s, 10.83 Mtxns/s

Recovery for YCSB-A
Simulates crash right before the
second checkpoint completes  

Recovered
database Checkpoint Log Total

Size 43.2 GB 36 GB 64 GB 100 GB

Recovery
time 33 s 73 s 106 s

Evaluation - TPC-C
• TPC-C is a popular OLTP

benchmark
• 28 workers, 4 loggers, 4

checkpoint threads
• Database size grows very fast
• Checkpoint period also grows

Evaluation - TPC-C

Avg throughput: 548 Ktxns/s, 575 Ktxns/s, 592 Ktxns/s

Recovery for TPC-C
Simulates crash right before the
fourth checkpoint completes  

Recovered
tuples Checkpoint Log Total

Size 72.2 GB 15.7 GB 180 GB 195.7 GB

Recovery
time 17 s 194 s 211 s

Evaluation conclusion

Can SiloR keep up with
high transaction
throughput from Silo?
Does recovery take no
more than a few minutes
for a large database?

Evaluation conclusion

Can SiloR keep up with
high transaction
throughput from Silo?
Does recovery take no
more than a few minutes
for a large database?

• Silo Overview
• SiloR Design

• Logging
• Checkpointing
• Recovery

• Evaluation
• Related work

Related work (partial list)
• VoltDB OLTP Recovery using

command logging (ICDE ’14):
operation logging advantages

• Recovery on RAMCloud (SOSP ’11):
really fast recovery

• Fast checkpoint recovery on frequently
consistent applications (SIGMOD ’11)  
…

Conclusion
• Built a persistence system for a very

fast multicore in-memory database
• Used parallelism in all parts of the

system to enable
• small degradation in runtime

performance
• recovery of large database in a few

minutes

Questions?

