Iprof : A Non-intrusive Request Flow
Profiler for Distributed Systems

Xu Zhao, Yongle Zhang, David Lion, Muhammad
FaizanUllah, Yu Luo, Ding Yuan, Michael Stumm

Oct. 8th 2014

UNIVERSITY OF

TORONTO

Performance analysis tools are needed

* Poor performance of distributed systems leads to
o Increase of user latency

o Increase of data center cost

* Distributed system behavior is hard to understand
o Concurrent requests being processed by multiple nodes

* To diagnose poor performance, tools are needed to
o Reconstruct the request control flow
o Understand system behavior

Existing tools are intrusive

* Instrument systems to infer request control flow
o E.g. MagPie, Project 5, X-Trace, Dapper, etc.
o Incur performance overhead
o Instrumentations are often system specific

System logs contain rich information

e Rich information in logs is not coincidence
o Developers rely on logs to perform manual debugging

e Distributed systems generate lots of logs
o During normal execution

" NetApp 7TB/month [Cloudera’13]

facebook. 25TB/day [Rothschild’09]

Existing log analyzers are limited

e Cannot infer request control flow
o Machine learning based log analyzers
* £.g. [Xu’09], DISTALYZER, Synoptic, etc.
* Only detect system anomalies
o Commercial tools
* E.g. splunk, VMWare Loglnsight
* Require users to perform key-word based searches

Iprof: a non-intrusive profiler

* Infers request control flow from system logs
o Along with timing information
o Group logs printed by the same request on multiple nodes
o Use information generated by static analysis

System logs Request control flow

————————————————————————————————————

i | de: Receiving block BP-1811987486-11

| | 879960148877_8619 src: /172.31.42.1¢

| | 2014-04-19 08:37:00,316 INFO org.apa

| | de.clienttrace: src: /172.31.42.100!

! 1 910-1397888183807, blockid: BP-1811¢

(]

' | 6879960148877_8619, type=HAS_DOWNSTF

| | 094451935804_8660 src: /172.31.42.16 Thread?2 Thread4
! r 000002_0_-1209592665 1, offset: 0,

| |
1 1
A S 0 <Yo [V[¢ d q
! Nod | Nodel Node2
1 Node 1 : ‘r
i | 2014-04-19 08:36:13,788 INFO org.aps > \
! ' es: 67108864, op: HDFS_WRITE, clilD!
' | r_000002_0_-1209592665_1, offset: 0,
| 1 =7432936879960148877_8619, durationj
| 1 2014-04-19 08:37:00,316 INFO org.ap? Threadil Thread3
| ' de: PacketResponder: BP-1811987486-] <
ii 2014-04-19 08:37:00,322 INFO org.ape
1 1 de: Receiving block BP-1811987486-17
i | 2014-04-19 08:37:46,856 INFO org.aps K j K j
i 1 de.clienttrace: src: /172.31.42.100;
| | es: 67108864, op: HDFS_WRITE, cliIDi
| 010-1397888183807, blockid: BP-1811¢

Outline

e Case Study
* Design

e Evaluation

A real-world example

* Performance regression — HDFS-4049

Latency for each type of request

writeBlock —

readBlock —

AN W

04:00 08:00 12:00
Time
e writeBlock is suspecious

(ms)

1500

1000

Latency

500

16:00

Zoom into per-node latency

(ms) Per-node Latency
1000

DN1
750 DN2
500 DN1
DN3 DN2 DN3
250 II
0

pre-update writeBlock Node post-update writeBlock

Latency

o Intra-node latency doesn’t increases while inter-node does
o Conclusion: unnecessary network communication

* Design

e Evaluation

Outline

10

Byte code

Logs

)

Overview

—————————————

/
{ Static analysis }

{ Log analysis } >
\

\- ———————————

{ Visualization }

w

Request database

2N i

— e o o o e e e e o -

Challenges

* Goal: to stitch log messages with respective requests

| DataNode2
Receiving block blk_01

———

e i DataNodel
- Receiving block blk_01 ; writeBlock1
... i Receiving block blk 02// writeBlock2
... Received block blk_01

——————

. HDFS_READ block blk_0
'blk_01 terminating

log snippet from HDFS data nodes

readBlock

* Logs are interleaved

 From different request types

* From different request instances of the same type
* Perfect identifiers doesn’t always exist
* Distributed across multiple nodes

Code snippet in HDFS

1 dataXCeiver() { 13 writeBlock(blk id, ..) {

2 switch(opCode){ 14 log(“Receiving block ” + blk_idb;
3 case WRITE BLOCK: 15 new PacketResponder().start();

4 blk _id = getBlock(); 16 }

5 |writeBlock(blk_id, ..); |17 readBlock(blk_id, ..) {

6 break; 18 log(“HDFS_READ block ” +

7 case READ BLOCK: 19 }

8 blk id = getBlock(); 20 PacketResponder.run() {

9 |readBlocki(blk_id, ..); |21 ,log(“Received block ” + blk_id);
10 break; 22<::m

11 } 23 *log(blk_id + “ terminating”);
12} 24 }

* Top level method - starting method to process a request
 Request identifier - logged variable not modified in one request
* Logtemporal order - possible order between log statements

e Communication behavior - communication between threads

Request analysis

* Find top level method
* Find request identifiers
* Intuition
o Request identifiers already exist for manual debugging

o Not modified within one request
o Once modified, outside of the request

Request analysis example

* Bottom-up analysis on call graph
o Logged variables — identifier candidates (IC)
o Number of times they got printed — count

1 dataXCeiver () { Call Graph

2 switch(opCode){ [dataxCeiver() } IC: {}

3 case WRITE BLOCK: count:0

4 blk _id = getBlock();

5 writeBlock(blk_id, ..); [wr‘iteBlock()} [readBlock() }

6 break; IC: {blk_id} IC: {blk_id}

7 case READ BLOCK: count: 8 count: 7

8 blk _id = getBlock();

2 readBlock(blk_id, ..); top level method | identifiers

10 break;] .
writeBlock blk _id

g)

12} readBlock blk_id

o Once count decreases, pick top level method and identifier

Temporal order analysis

e Control flow analysis in each top level method

temporal order

20 PacketResponder.run() { >
21 @ log(“Received block ” + blk_id);

22

23 @ log(blk_id + “ terminating”);

24 }

16

Communication pair analysis

e Communication between request top level methods
o Intra-node: thread creation, shared objects
o Network: socket, RPC
 Pair serializing and de-serializing methods

Summary of static analysis output

 Top level method & request identifier

top level method identifiers
writeBlock() blk_id
readBlock() blk_id

* Log temporal order

* Communication pair
writeBlock()

type: Network
id: blk_id

v
writeBlock()

PacketResponder.run()

o0

writeBlock()

id: blk_id

PacketResponder.run()

type: Thread Creation

Distributed log stitching

Implemented as a MapReduce job

e writeBlock
 CNode 2 T [9 logs
! Nd1 from 3
/0 € ~ writeBlock nodes],
1 Receiving blk_01——— [log1],blk_01 \ blk 01
2 Received blk_01 .
. 1| 3 blk_01 terminating N [fktfz?sg]rlgll,;(-
] _i J Og)) _
AN Nodelslog/
Map Combme Reduce

Introduction
Case Study
Design

Evaluation

Outline

20

Evaluation methodology

* Evaluated on logs from 4 distributed systems
o HDFS, Yarn, HBase, Cassandra

o Logs generated on 200 Amazon EC2 nodes
o HiBench, YCSB workload

e Authors manually verified each unique log sequence

® Receiving block ...
@ Received block ...
® .. terminating

logs

writeBlock log sequence
000 0>00>00>0

21

Request attribution accuracy

accuracy for all the log messages

System Correct |Incomplete Failed Incorrect
HDFS 97.0% 0.1% 2.6% 0.3%
Yarn 79.6% 19.2% 1.2% 0.0%

Cassandra 95.3% 0.1% 4.6% 0.0%
HBase 90.6% 2.5% 3.4% 3.5%
Average 90.4% 5.7% 3.0% 1.0%

Real-world performance anomalies

e Randomly selected 23 anomalies
o Reproduced each one to collect logs

* |prof is helpful for identifying the root cause for 65%

e Reasons for the cases lprof cannot help
o Abnormal requests don’t print any logs
o The abnormal request only print 1 log
* But latency is needed for debugging

2=

Related work

* |ntrusive tools

o E.g. MagPie, Project 5, X-Trace, Dapper, etc.

e Existing log analyzers
o E.qg. [Xu’09], DISTALYZER, Synoptic, etc.

 The Mystery Machine [Chow’14]
o Infers request flow across software layers
o Analyzes critical path and slack
o But requires instrumenting IDs into logs

24

Conclusions

e |prof: a profiler for distributed system
o Infers request control flow along with timing information
o Non-intrusive because entirely from system logs
o Analyzes logs with information generated by static analysis

* |prof leverages the natural way developers do logging

Demo

UNIVERSITY OF

TORONTO

25

Limitations

* |prof benefits from good logging practice
o lprof cannot help when there’s no log
o Timestamp is required for latency analysis
o Good identifier can improve the accuracy

e |prof cannot infer request across software layers

* |prof currently works on Java byte code

26

