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Performance analysis tools are needed

* Poor performance of distributed systems leads to
o Increase of user latency

o Increase of data center cost

* Distributed system behavior is hard to understand
o Concurrent requests being processed by multiple nodes

* To diagnose poor performance, tools are needed to
o Reconstruct the request control flow
o Understand system behavior



Existing tools are intrusive

* Instrument systems to infer request control flow
o E.g. MagPie, Project 5, X-Trace, Dapper, etc.
o Incur performance overhead
o Instrumentations are often system specific



System logs contain rich information

e Rich information in logs is not coincidence
o Developers rely on logs to perform manual debugging

e Distributed systems generate lots of logs
o During normal execution

" NetApp 7TB/month [Cloudera’13]

facebook. 25TB/day [Rothschild’09]



Existing log analyzers are limited

e Cannot infer request control flow
o Machine learning based log analyzers
* £.g. [Xu’09], DISTALYZER, Synoptic, etc.
* Only detect system anomalies
o Commercial tools
* E.g. splunk, VMWare Loglnsight
* Require users to perform key-word based searches



Iprof: a non-intrusive profiler

* Infers request control flow from system logs
o Along with timing information
o Group logs printed by the same request on multiple nodes
o Use information generated by static analysis

System logs Request control flow
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A real-world example

* Performance regression — HDFS-4049
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Zoom into per-node latency
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o Intra-node latency doesn’t increases while inter-node does
o Conclusion: unnecessary network communication



* Design

e Evaluation

Outline

10



Byte code

Logs

)

Overview

—————————————

/
{ Static analysis }

{ Log analysis } >
\

\- ———————————

_____________

{ Visualization }

w

Request database

2N i

— e o o o e e e e o -



Challenges

* Goal: to stitch log messages with respective requests

___________________________________________________

| DataNode2
Receiving block blk_01

———————————————————————————————————————————————

e i DataNodel
- Receiving block blk_01 ; writeBlock1
... i Receiving block blk 02// writeBlock2
... Received block blk_01

——————

. HDFS_READ block blk_0
'blk_01 terminating

log snippet from HDFS data nodes

readBlock

* Logs are interleaved

 From different request types

* From different request instances of the same type
* Perfect identifiers doesn’t always exist
* Distributed across multiple nodes



Code snippet in HDFS

1 dataXCeiver() { 13 writeBlock(blk id, ..) {

2  switch(opCode){ 14  log(“Receiving block ” + blk_idb;
3 case WRITE BLOCK: 15 new PacketResponder().start();

4 blk _id = getBlock(); 16 }

5 |writeBlock(blk_id, ..); |17 readBlock(blk_id, ..) {

6 break; 18 log(“HDFS_READ block ” +

7 case READ BLOCK: 19 }

8 blk id = getBlock(); 20 PacketResponder.run() {

9 |readBlocki(blk_id, ..); |21 ,log(“Received block ” + blk_id);
10 break; 22<::m

11 } 23 *log(blk_id + “ terminating”);
12} 24 }

* Top level method - starting method to process a request
 Request identifier - logged variable not modified in one request
* Logtemporal order - possible order between log statements

e Communication behavior - communication between threads



Request analysis

* Find top level method
* Find request identifiers
* Intuition
o Request identifiers already exist for manual debugging

o Not modified within one request
o Once modified, outside of the request



Request analysis example

* Bottom-up analysis on call graph
o Logged variables — identifier candidates (IC)
o Number of times they got printed — count

1 dataXCeiver () { Call Graph

2 switch(opCode){ [ dataxCeiver() } IC: {}

3 case WRITE BLOCK: count:0

4 blk _id = getBlock();

5 writeBlock(blk_id, ..); [wr‘iteBlock()} [ readBlock() }

6 break; IC: {blk_id} IC: {blk_id}

7 case READ BLOCK: count: 8 count: 7

8 blk _id = getBlock();

2 readBlock(blk_id, ..); top level method | identifiers

10 break; ] .
writeBlock blk _id

g )

12} readBlock blk_id

o Once count decreases, pick top level method and identifier



Temporal order analysis

e Control flow analysis in each top level method

temporal order

20 PacketResponder.run() { >
21 @ log(“Received block ” + blk_id);

22

23 @ log(blk_id + “ terminating”);

24 }
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Communication pair analysis

e Communication between request top level methods
o Intra-node: thread creation, shared objects
o Network: socket, RPC
 Pair serializing and de-serializing methods



Summary of static analysis output

 Top level method & request identifier

top level method identifiers
writeBlock() blk_id
readBlock() blk_id

* Log temporal order

* Communication pair
writeBlock()

type: Network
id: blk_id

v
writeBlock()

PacketResponder.run()

o0

writeBlock()

id: blk_id

PacketResponder.run()

type: Thread Creation



Distributed log stitching

Implemented as a MapReduce job

e writeBlock
 CNode 2 T [9 logs
! Nd1 from 3
/0 € ~ writeBlock nodes],
1 Receiving blk_01——— [log1],blk_01 \ blk 01
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] _i J Og ) ) _
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Evaluation methodology

* Evaluated on logs from 4 distributed systems
o HDFS, Yarn, HBase, Cassandra

o Logs generated on 200 Amazon EC2 nodes
o HiBench, YCSB workload

e Authors manually verified each unique log sequence

® Receiving block ...
@ Received block ...
® .. terminating

logs

writeBlock log sequence
000 0>00>00>0
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Request attribution accuracy

accuracy for all the log messages

System Correct |Incomplete Failed Incorrect
HDFS 97.0% 0.1% 2.6% 0.3%
Yarn 79.6% 19.2% 1.2% 0.0%

Cassandra 95.3% 0.1% 4.6% 0.0%
HBase 90.6% 2.5% 3.4% 3.5%
Average 90.4% 5.7% 3.0% 1.0%




Real-world performance anomalies

e Randomly selected 23 anomalies
o Reproduced each one to collect logs

* |prof is helpful for identifying the root cause for 65%

e Reasons for the cases lprof cannot help
o Abnormal requests don’t print any logs
o The abnormal request only print 1 log
* But latency is needed for debugging
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Related work

* |ntrusive tools

o E.g. MagPie, Project 5, X-Trace, Dapper, etc.

e Existing log analyzers
o E.qg. [Xu’09], DISTALYZER, Synoptic, etc.

 The Mystery Machine [Chow’14]
o Infers request flow across software layers
o Analyzes critical path and slack
o But requires instrumenting IDs into logs
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Conclusions

e |prof: a profiler for distributed system
o Infers request control flow along with timing information
o Non-intrusive because entirely from system logs
o Analyzes logs with information generated by static analysis

* |prof leverages the natural way developers do logging

Demo
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Limitations

* |prof benefits from good logging practice
o lprof cannot help when there’s no log
o Timestamp is required for latency analysis
o Good identifier can improve the accuracy

e |prof cannot infer request across software layers

* |prof currently works on Java byte code
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