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 Motivation

Trends in hardware and software

 Booting and shutting down cores dynamically
Decoupling the kernel state

 Evaluation

Kernel updates, specialized kernels
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Outline
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 Constrained by power consumption

 Reconfigurable cores (dynamically changed behavior)

 DVFS, Turbo Boost, SMT

 Core Fusion [ISCA ‘07]

 Dark silicon [ISCA ‘10]

 Heterogeneous cores

 Fast and power hungry vs. slow and power efficient

 Asymmetric multiprocessing

 Conservation Cores [ASPLOS ‘10]
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What’s happening to hardware
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 OS needs to adapt to different workloads

 Adapting at build-, boot-, and run-time

 Debugging support: profiling, tracing etc.

 Real-time support

 On-the-fly kernel updates

 KSplice (Linux) [EuroSys ‘09]

 K42 [ATC ‘07]
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What’s happening to software
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Multikernel [SOSP ‘09]
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 Barrelfish OS

 Treating cores as pluggable devices

 Booting a core dynamically with boot drivers

 Shutting down a core

 Decoupling Cores, Kernels and the Operating System

Externalizing kernel state
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Implementation
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 OS service for target core management

 Dynamically chooses kernel for core based on runtime information

 Boots any core with any suitable kernel

 Run any OSNode on any compatible core

 Implements boot, shutdown, reboot protocol

Booting a core with boot drivers
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 Harder than booting a core

 Need to deal with per-core state: Scheduler queues, memory pools, page-tables…

 Takes time (and energy)

 However, we want to remove the core as fast as possible

 General approach (cf. Chameleon [ASPLOS ’12])

 Get state out of the way quickly

 Dismantle it later, lazily (if needed)
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Shutting down a core
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Shutting down a core
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Shutting down a core
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Highly scalable, only two cores involved
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OSNode: All state for a single core and kernel

How do we capture this OSNode?

 Capabilities:

 Tracks all application state

 Tracks all OS state

cf. seL4, EROS, KeyKOS

 KCB (Kernel control block)

 Hardware specific state

 Entry point to capability tree

 Represented as a capability itself
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What is the OSNode?
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State externalization & dynamic core booting is a much more general mechanism
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 Core management

Adding and removing cores in the system

 Kernel updates

Hot-swapping the kernel

 Specialized kernels

e.g., eliminate OS jitter
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Evaluation
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Core management (Haswell, 1x4 cores, no HT)

Booting a core No Load Load

Linux 3.13 14 ms 20 ms

Barrelfish/DC 7.5 ms 7.5 ms

Removing a core No Load Load

Linux 3.13 46 ms 2542 ms

Barrelfish/DC 0.0008 ms 0.0008 ms
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 Shut-down target core
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Use-case: Kernel Updates 
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 Shut-down target core

 Reboot core with a new kernel image
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 Shut-down target core

 Reboot core with a new kernel image

 Dispatch previous OSNode
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Use-case: Kernel Updates 
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Kernel updates: PostgreSQL & TPC-H

Hot-swapping 

the kernel
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 A thread that needs to run with hard real time performance

 E.g., phone baseband stack, control application, robotics etc.

 A lot of effort spent to make this work in a general purpose OS

 Many real time OS for embedded systems (RTLinux, LynxOS, QNX, …)
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Use-case: Temporary real time task
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Use-case: Real time application
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Use-case: Real time application
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OSNode

 Shut-down target core
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Use-case: Specialized kernels
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OSNodeOSNode

 Shut-down target core

 Temporarily park the target OSNode
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Evaluation: PostgreSQL & TPC-H
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RT Kernel

RT Application

OSNodeOSNode

 Shut-down target core

 Temporarily park the target OSNode

 Boot simple real-time kernel that runs just 

one application

 Does not take interrupts

 No timers

 No scheduler

 Temporarily provides task with hard real 

time guarantees
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Use-case: Specialized kernels
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# cycles for 

1k memory 

stores

Almost all 

samples 

between 6-7k Outliers (OS 

jitter)

No samples 

outside of 6-7k 

range
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 Transfer OSNodes between power efficient and high performance cores

 Dynamic OS instrumentation

 Profiling, tracing kernels

 A/B kernel testing

 Specialized kernel to run applications in guest ring 0

cf. Arrakis
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Future Work & Applications
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 Decoupling the kernel state

 Result: highly dynamic OS architecture

 Kernels can be rebooted, updated and 

specialized

 Cores can be allocated and de-allocated 

arbitrarily

 For many versions of the “dark silicon” 

hardware, this may be the only way for 

system software
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Conclusion

www.barrelfish.org
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Backup
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Dealing with interrupts

1. Timers, etc. local to core and CPU driver

 Handled internally to CPU driver

2. Inter-processor interrupts (IPIs)

 Indirection table of OSNodes → physical cores

3. Device interrupts

 Must be re-routed to new core

27



||

Device interrupts
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Device interrupts
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Device interrupts
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Device interrupts
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core 1 core 2

kernel 2

Device driver
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Interrupt rerouted


