pes
A

Decoupllng Cores Kernels and Operatlng Systems

Gerd Zellweger, Simon Gerber, Kornilios Kourtis, Timothy Roscoe
Systems Group, ETH Zirich

| 10/6/2014 [1

mvmanen

Outline

= Motivation
Trends in hardware and software

= Booting and shutting down cores dynamically
Decoupling the kernel state

= Evaluation
Kernel updates, specialized kernels

| 10/6/2014 | 2

What’s happening to hardware

= Constrained by power consumption

= Reconfigurable cores (dynamically changed behavior)
= DVFS, Turbo Boost, SMT
= Core Fusion [ISCA ‘07]
= Dark silicon [ISCA “10]

. Heterogeneous cores
= Fast and power hungry vs. slow and power efficient

= Asymmetric multiprocessing
= Conservation Cores [ASPLOS ‘10]

| 10/6/2014 | 3

What current operating systems look like

| 10/6/2014 | 4

What current operating systems look like

| 10/6/2014 | 4

What current operating systems look like

e

| 10/6/2014 | 4

What’s happening to software

= OS needs to adapt to different workloads

= Adapting at build-, boot-, and run-time
= Debugging support: profiling, tracing etc.
= Real-time support

= On-the-fly kernel updates

= KSplice (Linux) [EuroSys ‘09]
= K42 [ATC ‘07]

| 10/6/2014 | 5

Multikernel [SOSP “09]

OSNode [— OSNode m OSNode Async. OSNode

Messages £ Messages £ . Messages
Kernel Kernel Kernel

| 10/6/2014 | 6

Implementation

= Barrelfish OS

= Treating cores as pluggable devices
= Booting a core dynamically with boot drivers
= Shutting down a core

= Decoupling Cores, Kernels and the Operating System
Externalizing kernel state

| 10/6/2014 | 7

Booting a core with boot drivers

= OS service for target core management

= Dynamically chooses kernel for core based on runtime information
= Boots any core with any suitable kernel
= Run any OSNode on any compatible core

= |Implements boot, shutdown, reboot protocol

| 10/6/2014 | 8

Shutting down a core

= Harder than booting a core
= Need to deal with per-core state: Scheduler queues, memory pools, page-tables...
= Takes time (and energy)
= However, we want to remove the core as fast as possible
= General approach (cf. Chameleon [ASPLOS '12])
= Get state out of the way quickly
= Dismantle it later, lazily (if needed)

| 10/6/2014 [9

Shutting down a core

OSNode OSNode OSNode OSNode

Kernel Kernel Kernel

CPU CPU CPU

| 10/6/2014 | 10

Shutting down a core

OSNode OSNode OSNode OSNode

Kernel Kernel Kernel

CPU CPU CPU

| 10/6/2014 | 10

Shutting down a core

OSNode OSNode OSNode OSNode

Kernel Kernel Kernel

CPU CPU CPU

| 10/6/2014 | 10

Shutting down a core

OSNode OSNode OSNode OSNode

OSNode
Kernel Kernel Kernel Scheduler

| 10/6/2014 | 10

Shutting down a core

I Parking
OSNode

OSNode OSNode OSNode OSNode

OSNode
Kernel Kernel Kernel Scheduler

| 10/6/2014 | 10

Shutting down a core

I Parking
OSNode

OSNode OSNode OSNode OSNode

OSNode
Kernel Kernel Kernel Scheduler

Highly scalable, only two cores involved

| 10/6/2014 | 10

What i1s the OSNode?

OSNode: All state for a single core and kernel OSNode
. Partitioned Capabilities

How do we capture this OSNode?

—)

- Capabllltles : Frame — Frame Null
= Tracks all application state femel state L fame | [Frame Frame
= Tracks all OS state Scheduler State — Frame —| Frame Frame
Cf. SeL4, EROS, KeyKOS Cap Derivation Tree[[Frame —1 CNode Frame

Timer Offset

= KCB (Kernel control block) p— | T voae | L cvome
= Hardware specific state * 1
= Entry point to capability tree OB o pca | o4 pes

= Represented as a capability itself

| 10/6/2014 | 11

Decoupling Cores, Kernels and Operating Systems

State externalization & dynamic core booting is a much more general mechanism

OSNode OSNode

T

| 10/6/2014 [12

Decoupling Cores, Kernels and Operating Systems

State externalization & dynamic core booting is a much more general mechanism

OSNode | OSNode

B

| 10/6/2014 [12

Decoupling Cores, Kernels and Operating Systems

State externalization & dynamic core booting is a much more general mechanism

OSNode OSNode

T

| 10/6/2014 [12

Decoupling Cores, Kernels and Operating Systems

State externalization & dynamic core booting is a much more general mechanism

OSNode OSNode

Kernel I

CPU

| 10/6/2014 [12

Decoupling Cores, Kernels and Operating Systems

State externalization & dynamic core booting is a much more general mechanism

OSNode OSNode

Kernel I Kernel I

CPU CPU

| 10/6/2014 [12

Evaluation

= Core management
Adding and removing cores in the system

= Kernel updates
Hot-swapping the kernel

= Specialized kernels
e.g., eliminate OS jitter

| 10/6/2014 [13

Core management (Haswell, 1x4 cores, no HT)

Booting a core No Load Load
Linux 3.13 14 ms 20 ms
Barrelfish/DC 7.5 ms 7.5 ms
Removing a core No Load Load
Linux 3.13 46 ms 2542 ms

Barrelfish/DC 0.0008 ms 0.0008 ms

| 10/6/2014 | 14

Use-case: Kernel Updates

= Shut-down target core I

OSNode

Kernel I

CPU

| 10/6/2014 | 15

Use-case: Kernel Updates

= Shut-down target core I
= Reboot core with a new kernel image

OSNode

Kernel I Kernel I

CPU CPU

| 10/6/2014 | 15

Use-case: Kernel Updates

= Shut-down target core I I
= Reboot core with a new kernel image

= Dispatch previous OSNode OSNode OSNode

Kernel I Kernel I

CPU CPU

| 10/6/2014 | 15

Kernel updates: PostgreSQL & TPC-H
100

80} -

Hot-swapping

the kernel

(@)
o

N
o

Latency of Query [ms]
N
S

o

0 50 100 150 200 250
Time [Query]

10/6/2014

Use-case: Temporary real time task

= Athread that needs to run with hard real time performance
= E.g., phone baseband stack, control application, robotics etc.

= Alot of effort spent to make this work in a general purpose OS
= Many real time OS for embedded systems (RTLinux, LynxOS, QNX, ...)

| 10/6/2014 [17

Use-case: Real time application

| 10/6/2014 | 18

Use-case: Real time application

RT Kernel

| 10/6/2014 | 18

Use-case: Real time application

RT Kernel

| 10/6/2014 | 18

Use-case: Specialized kernels

= Shut-down target core

OSNode

Kernel I

CPU

| 10/6/2014 | 19

Use-case: Specialized kernels

= Shut-down target core I
= Temporarily park the target OSNode

OSNode OSNode

Kernel I

CPU

| 10/6/2014 | 19

Evaluation: PostgreSQL & TPC-H

Parked OSNode Move OSNode

(2 OSNodes per back to original
core) core

= O
o O
-+

N
o

Latency of Query [ms]

pwpeiilen 20 40 60 80 100 120 140
per core Time [Query] s 1

-

Use-case: Specialized kernels

= Shut-down target core

= Temporarily park the target OSNode

= Boot simple real-time kernel that runs just
one application

= Does not take interrupts OSNode | OSNode OSNode
= No timers

= Temporarily provides task with hard real
time guarantees

CPU CPU

| 10/6/2014 | 21

Almost all

samples BN Barrelfish
cycles for between 6-7k Outliers (OS
1k memory jitter)
stores
6 9 12 15 18 21 24 27 30 33
Kilo cycles

B Linux 3.13 |

Count

N e e

18 21 24 27 30 33
Kilo cycles
I Barrelfish/DC Dedicated Kernel |]
No samples
outside of 6-7k
range
9 12 15 18 21 24 27 30 33
Kilo cycles

| 10/6/2014 | 22

Future Work & Applications

= Transfer OSNodes between power efficient and high performance cores

= Dynamic OS instrumentation
= Profiling, tracing kernels

= A/B kernel testing

= Specialized kernel to run applications in guest ring 0
cf. Arrakis

| 10/6/2014 | 23

Conclusion

= Decoupling the kernel state

= Result: highly dynamic OS architecture
= Kernels can be rebooted, updated and
specialized
= Cores can be allocated and de-allocated
arbitrarily
= For many versions of the “dark silicon”
hardware, this may be the only way for
system software

www.barrelfish.org

| 10/6/2014 | 24

Backup

Dealing with interrupts

1. Timers, etc. local to core and CPU driver
= Handled internally to CPU driver

2. Inter-processor interrupts (IPIs)
= Indirection table of OSNodes - physical cores

3. Device interrupts
o Must be re-routed to new core

Device interrupts

Device driver

kernel 1

|IOAPIC

Device interrupts

Kernel masks
interrupts kernel 2

core 2

|IOAPIC

Device interrupts

New kernel o dr
initializes Device driver

kernel 2

vectors

|IOAPIC

Device interrupts

"Register interrupts”
message

Device driver

kernel 2

vectors

|IOAPIC

Device interrupts

Device driver

<ernel 2

Interrupt rerouted

vectors

