
||

Gerd Zellweger, Simon Gerber, Kornilios Kourtis, Timothy Roscoe

Systems Group, ETH Zürich

Decoupling Cores, Kernels and Operating Systems

10/6/2014 1

||

 Motivation

Trends in hardware and software

 Booting and shutting down cores dynamically
Decoupling the kernel state

 Evaluation

Kernel updates, specialized kernels

10/6/2014 2

Outline

||

 Constrained by power consumption

 Reconfigurable cores (dynamically changed behavior)

 DVFS, Turbo Boost, SMT

 Core Fusion [ISCA ‘07]

 Dark silicon [ISCA ‘10]

 Heterogeneous cores

 Fast and power hungry vs. slow and power efficient

 Asymmetric multiprocessing

 Conservation Cores [ASPLOS ‘10]

10/6/2014 3

What’s happening to hardware

||

CPU CPU

10/6/2014 4

What current operating systems look like

CPU

Kernel

Application Application Application

CPU

||

CPU CPU

10/6/2014 4

What current operating systems look like

CPU

Kernel

Application Application Application

||

CPU

10/6/2014 4

What current operating systems look like

CPU

Kernel

Application Application Application

||

 OS needs to adapt to different workloads

 Adapting at build-, boot-, and run-time

 Debugging support: profiling, tracing etc.

 Real-time support

 On-the-fly kernel updates

 KSplice (Linux) [EuroSys ‘09]

 K42 [ATC ‘07]

10/6/2014 5

What’s happening to software

|| 10/6/2014 6

Multikernel [SOSP ‘09]

CPU CPU CPU

Kernel

CPU

Kernel Kernel Kernel

OSNode OSNode OSNode OSNode
Async.

Messages

Async.

Messages

Async.

Messages

Application Application Application

||

 Barrelfish OS

 Treating cores as pluggable devices

 Booting a core dynamically with boot drivers

 Shutting down a core

 Decoupling Cores, Kernels and the Operating System

Externalizing kernel state

10/6/2014 7

Implementation

||

 OS service for target core management

 Dynamically chooses kernel for core based on runtime information

 Boots any core with any suitable kernel

 Run any OSNode on any compatible core

 Implements boot, shutdown, reboot protocol

Booting a core with boot drivers

10/6/2014 8

||

 Harder than booting a core

 Need to deal with per-core state: Scheduler queues, memory pools, page-tables…

 Takes time (and energy)

 However, we want to remove the core as fast as possible

 General approach (cf. Chameleon [ASPLOS ’12])

 Get state out of the way quickly

 Dismantle it later, lazily (if needed)

10/6/2014 9

Shutting down a core

|| 10/6/2014 10

Shutting down a core

CPU CPU CPU

Kernel

CPU

Kernel Kernel Kernel

OSNode OSNode OSNode OSNode

Application Application Application

|| 10/6/2014 10

Shutting down a core

CPU CPU CPU

Kernel Kernel Kernel

OSNode OSNode OSNode OSNode

Application Application Application

|| 10/6/2014 10

Shutting down a core

CPU CPU CPU

Kernel Kernel Kernel

OSNode OSNode

Application Application

Application

OSNode OSNode

|| 10/6/2014 10

Shutting down a core

CPU CPU CPU

Kernel Kernel Kernel

OSNode OSNode

Application Application

OSNode

Scheduler

Application

OSNode OSNode

|| 10/6/2014 10

Shutting down a core

CPU CPU CPU

Kernel Kernel Kernel

OSNode OSNode

Application Application

OSNode

Scheduler

Application

OSNode OSNode

Parking

OSNode

|| 10/6/2014 10

Shutting down a core

CPU CPU CPU

Kernel Kernel Kernel

OSNode OSNode

Application Application

OSNode

Scheduler

Application

OSNode OSNode

Parking

OSNode

Highly scalable, only two cores involved

||

CNode

...

Frame

Frame

Frame

Frame

PCB PCBKCB

Scheduler State

Cap Derivation Tree

Timer Offset

IRQ State CNode

...

Frame

Frame

Frame

CNode

...

Null

Frame

Frame

Frame

OSNode: All state for a single core and kernel

How do we capture this OSNode?

 Capabilities:

 Tracks all application state

 Tracks all OS state

cf. seL4, EROS, KeyKOS

 KCB (Kernel control block)

 Hardware specific state

 Entry point to capability tree

 Represented as a capability itself

10/6/2014 11

What is the OSNode?

CNode

...

Frame

Frame

Frame

Frame

PCB PCBKCB

Scheduler State

Cap Derivation Tree

Timer Offset

IRQ State CNode

...

Frame

Frame

Frame

CNode

...

Null

Frame

Frame

Frame

CNode

...

Frame

Frame

Frame

Frame

PCB PCBKCB

Scheduler State

Cap Derivation Tree

Timer Offset

IRQ State CNode

...

Frame

Frame

Frame

CNode

...

Null

Frame

Frame

Frame

||

State externalization & dynamic core booting is a much more general mechanism

10/6/2014 12

Decoupling Cores, Kernels and Operating Systems

CPU CPU

Kernel Kernel

OSNode OSNode

||

State externalization & dynamic core booting is a much more general mechanism

10/6/2014 12

Decoupling Cores, Kernels and Operating Systems

CPU CPU

Kernel Kernel

OSNode OSNode

||

State externalization & dynamic core booting is a much more general mechanism

10/6/2014 12

Decoupling Cores, Kernels and Operating Systems

CPU CPU

Kernel Kernel

OSNode OSNode

||

State externalization & dynamic core booting is a much more general mechanism

10/6/2014 12

Decoupling Cores, Kernels and Operating Systems

CPU CPU

Kernel

OSNode OSNode

||

State externalization & dynamic core booting is a much more general mechanism

10/6/2014 12

Decoupling Cores, Kernels and Operating Systems

CPU CPU

Kernel

OSNode OSNode

Kernel

||

 Core management

Adding and removing cores in the system

 Kernel updates

Hot-swapping the kernel

 Specialized kernels

e.g., eliminate OS jitter

10/6/2014 13

Evaluation

|| 10/6/2014 14

Core management (Haswell, 1x4 cores, no HT)

Booting a core No Load Load

Linux 3.13 14 ms 20 ms

Barrelfish/DC 7.5 ms 7.5 ms

Removing a core No Load Load

Linux 3.13 46 ms 2542 ms

Barrelfish/DC 0.0008 ms 0.0008 ms

||

 Shut-down target core

10/6/2014 15

Use-case: Kernel Updates

CPU

Kernel

OSNode

Application

CPU

||

 Shut-down target core

 Reboot core with a new kernel image

10/6/2014 15

Use-case: Kernel Updates

CPU

Kernel

OSNode

Application

CPU

Kernel

||

 Shut-down target core

 Reboot core with a new kernel image

 Dispatch previous OSNode

10/6/2014 15

Use-case: Kernel Updates

CPU

Kernel

OSNode

Application

CPU

OSNode

Application

Kernel

|| 10/6/2014 16

Kernel updates: PostgreSQL & TPC-H

Hot-swapping

the kernel

||

 A thread that needs to run with hard real time performance

 E.g., phone baseband stack, control application, robotics etc.

 A lot of effort spent to make this work in a general purpose OS

 Many real time OS for embedded systems (RTLinux, LynxOS, QNX, …)

10/6/2014 17

Use-case: Temporary real time task

|| 10/6/2014 18

Use-case: Real time application

OS OS OS OS

OSOSOSOS

|| 10/6/2014 18

Use-case: Real time application

OS OS OS OS

OSOSOSOS

RT Kernel

|| 10/6/2014 18

Use-case: Real time application

OS OS OS

OSOS

RT Kernel

||

OSNode

 Shut-down target core

10/6/2014 19

Use-case: Specialized kernels

CPU

Kernel

Application

CPU

||

OSNodeOSNode

 Shut-down target core

 Temporarily park the target OSNode

10/6/2014 19

Use-case: Specialized kernels

CPU

Kernel

Application

CPU

Application

|| 10/6/2014 20

Evaluation: PostgreSQL & TPC-H

One OSNode

per core

Parked OSNode

(2 OSNodes per

core)

Move OSNode

back to original

core

||

RT Kernel

RT Application

OSNodeOSNode

 Shut-down target core

 Temporarily park the target OSNode

 Boot simple real-time kernel that runs just

one application

 Does not take interrupts

 No timers

 No scheduler

 Temporarily provides task with hard real

time guarantees

10/6/2014 21

Use-case: Specialized kernels

CPU

Kernel

Application

CPU

OSNode

Application

|| 10/6/2014 22

cycles for

1k memory

stores

Almost all

samples

between 6-7k Outliers (OS

jitter)

No samples

outside of 6-7k

range

||

 Transfer OSNodes between power efficient and high performance cores

 Dynamic OS instrumentation

 Profiling, tracing kernels

 A/B kernel testing

 Specialized kernel to run applications in guest ring 0

cf. Arrakis

10/6/2014 23

Future Work & Applications

||

 Decoupling the kernel state

 Result: highly dynamic OS architecture

 Kernels can be rebooted, updated and

specialized

 Cores can be allocated and de-allocated

arbitrarily

 For many versions of the “dark silicon”

hardware, this may be the only way for

system software

10/6/2014 24

Conclusion

www.barrelfish.org

||

Backup

25

||

Dealing with interrupts

1. Timers, etc. local to core and CPU driver

 Handled internally to CPU driver

2. Inter-processor interrupts (IPIs)

 Indirection table of OSNodes → physical cores

3. Device interrupts

 Must be re-routed to new core

27

||

Device interrupts

28

core 1 core 2

kernel 1

Device driver

vectors

IRQh

IOAPIC

||

Device interrupts

29

core 1 core 2

kernel 1 kernel 2

Device driver

Kernel masks

interrupts

IOAPIC

vectors

||

Device interrupts

30

core 1 core 2

kernel 2

Device driver

vectors

IOAPIC

vectors

IRQh

New kernel

initializes

||

Device interrupts

31

core 1 core 2

kernel 2

Device driver

"Register interrupts"

message

IOAPIC

IRQh

vectorsvectors

||

Device interrupts

32

core 1 core 2

kernel 2

Device driver

IOAPIC

vectors

IRQh

Interrupt rerouted

