Simple testing can prevent most critical failures
-- An analysis of production failures in
distributed data-intensive systems

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain and Michael Stumm

University of Toronto

Code and dataset: E
http://www.eecg.toronto.edu/failureAnalysis/ uwmg;” N
TORONTO

Key findings

» Failures are the results of complex sequence of events

» Catastrophic failures are caused by incorrect error handling
Many are caused by a small set of trivial bug patterns

» Aspirator: a simple rule-based static checker

Found 143 confirmed new bugs and bad practices

Distributed system failures can be deadly

amazoncom
Amazon AWS outage downs Reddit, Quora, Foursquare,
Oopst Instagram, NetFlix, and about 70 other sites.

A

e

Google outage: Internet traffic plunges 40%.
3
W

i
‘3\1*
=3 Q\Y

\

Ib Facebook goes down; users called 911.

A thorough analysis of real-world failures

» Study end-to-end failure propagation sequence

O >0 >@

Fault (root cause), Error (exception), Failure,
e.g., bug, h/w fault, e.g., system-call visible to user/admin.
misconfiguration, etc. error return

Reveal the minimum conditions to expose failures
Reveal the weakest link

» Previous works only studied elements in isolation

Study methodology

» Randomly sampled 198 user-reported failures™

» Carefully studied the discussion and related code/patch
» Reproduced 73 to understand them

» 48 are catastrophic --- they affect all or a majority of users

Program Sampled failures
Software
language | Total | Catastrophic

Cassandra Java 40 2
HBase Java 41 21
HDFS Java 41 9
Hadoop MapReduce Java 38 8
Redis C 38 8
Total - 198 48

5 Analysis of each failure can be found at: http://www.eecg.toronto.edu/failureAnalysis/

Outline

) Failures are the results of complex sequence of events

» Catastrophic failures are caused by incorrect error handling
Many are caused by trivial bugs

» Aspirator: a simple rule-based static checker

An example

User: “Sudden outage on the entire HBase cluster.”

Event |:Load balance: transfer Region R from slave A to B
\ 4

Slave B opens R /* Master: delete the

* ZooKeeper znode after

Event 2: Slave B dies * the region 1is opened */
\k try {
R is assigned to slave C deleteZNode();
v } catch (KeeperException e) {
Slave C opens R cluster.abort(..”);

} Not handled
properly

Finding I: multiple events are required

: : Onl
/7% of the failures require more | 1y ocer on
, ong-running
than one input events system (38%)

__-——-‘\

Event |:Load balance: transfer Region R from slave A to B ‘
\ 4
Slave B opens R

/* Master: delete the
* ZooKeeper node after

Event 2: Slave B dies * the region 1is opened */
\k try {
R is assigned to slave C deleteZNode();
v } catch (KeeperException e) {
Slave C opens R cluster.abort(*..”);

¥

Finding II: event order matters

Order of events is important in 88% of
the multi-events failures
Event |:Load balance: transfer Region R from slave A to B

/‘ \ 4

Slave B opens R /* Master: delete the
\» * ZooKeeper node after
Event 2: Slave B dies * the region 1is opened */
\ try {
R is assigned to slave C deleteZNode();
v } catch (KeeperException e) {
Slave C opens R cluster.abort(*..”);

¥

Finding III: timing matters

26% of the failures are non-deterministic

Event |:Load balance: transfer Region R from slave A to B
\ 4

Slave B opens R /* Master: delete the

* ZooKeeper node after
[Event 2: Slave B dies] \ * the region 1s opened */
t

v ry {
R is assigned to slave C deleteZNode();

v } catch (KeeperException e) {
Slave C opens R cluster.abort(*..”);

¥

10

Complexity is not surprising

» These systems undergo thorough testing
Must provide unit test for every patch
Use static checker on every check-in

Use fault injection testing [HadoopFaultlnjection]

» Designed to provide high availability

E.g., automatic failover on master failures

11

Outline

» Failures are the results of complex sequence of events
mm) Catastrophic failures are caused by incorrect error handling

Catastrophic failures: those affect all or a majority of the users

» Aspirator: a rule-based static checker

12

Breakdown of catastrophic failures

92% of catastrophic failures are the result of incorrect error handling

» Error handling code is the last line of defense [Marinescu&Candea’l |]

Error detected, but
wrongly handled

92%

Faults

Undetected Error

8% ~—0)

(%001) sa4n|rej s1ydonsere)

13

Trivial mistakes in error handling code

Example of abort in over-catch

NonFatalException
FatalException Errors .ignored (25%)

} catch (Throwable t) { f_lt_’ggc';‘”?veﬁ'ca;rh (825;)
abort (“.”); in handler (2%) _

) Error detected, but Trivial mistakes (35%)

wrongly handled

System specific, but

92% easily detectable (23%)

Faults Complex bugs (34%)

Undetected Error

% —O)

(9%001) sa.njrey olydouasere)

14

A failure caused by trivial mistake

User:
“MapReduce jobs hang when a rare Resource Manager
restart occurs. | have to ssh to every one of our 4000 nodes in
a cluster and kill all jobs.”

catch (RebootException) {
—//TOBbO—

LOG(“Error event from RM: shutting down...”);
+ eventHandler.handle(exception response);

¥

15

Easily detectable bugs

Error detected, but Trivial mistakes (35%)

wrongly handled mpletely wrong

92%

— .
System specific, but
easily detectable (23%)

T

Faults Complex bugs (34%)

Undetected Error

% —0

(9%001) sa4njrej a1ydo.aisere)

i ominm

16

The HBase example: an easily detectable bug

» Difficult to be triggered; easily detectable by code review

Event |:Load balance: transfer Region R from slave A to B
\ 4

Slave B opens R /* Master: delete the

* ZooKeeper znode after

Event 2: Slave B dies * the region 1is opened */
\k try {
R is assigned to slave C deleteZNode();
v } catch (KeeperException e) {
Slave C opens R cluster.abort(*..”);

- <

17

Over half are trivial or easily detectable bugs

Error detected, but Trivial mistakes (35%)
wrongly handled ‘

System specific, but

(%001) so4njre} oiydouaseied

92% easily detectable (23%)
Faults Complex bugs (34%)
Undetected Error
% —0) 0

18

Outline

» Failures are the results of complex sequence of events

» Catastrophic failures are caused by incorrect error handling

m=) Aspirator: a simple rule-based static checker

19

Aspirator: a static checker for Java programs

» Three rules on exception handling
Not empty

Not abort on exception over-catch
No “TODO” or “FIXME” comment

» False positive suppression techniques (details in paper)

» Over |/3 of catastrophic failures could have been prevented

If aspirator has been used and identified bugs fixed

20 All source code of aspirator is at: http://www.eecg.toronto.edu/failureAnalysis/

Checking real-world systems

new bugs in every

System ‘ Bugs Bad practice | False positive

Cassandra 2 9
Training set HBase 43 20
HDFS 32 |16
Hadoop MapRed.2 |5 I
Cloudstack |85 20
Hive 54 8
Testing set Tomcat 23 30
Spark I 2
Zookeeper 24 9
Total |15

21

New bugs can lead to catastrophic failures

» Hang system

try {
tableLock.release();

} catch (IOException e) {
LOG("Can't release lock”, e);

}

» Data loss

try {
journal.recover();

} catch (IOException ex) {
T Cannot recover
} ‘ updatesfron1j?EEEEL’/////

» Cluster crash

E.g., bugs found by “abort in over-catch” check

22

Mixed feedbacks from developers

» Reported |71 new bugs/bad practices
143 confirmed/fixed; |7 rejected; no response for the rest

“No one would have looked at this hidden feature; ignoring
exceptions is bad precisely for this reason”

“I really want to fix issues in this line, because | really want us to
use exceptions properly and never ignore them”

“I fail to see the reason to handle every exception.”

23

Why do developers ignore error handling?

» Developers think the errors will never happen
Code evolution may enable the errors
The judgment can be wrong

} catch (IOException e) {
// will never happen

}

» Error handling is difficult
Errors can be returned by 3™ party libraries

} catch (NoTransitionException e) {
/* Why this can happen? Ask God not me. */

¥

» Feature development is prioritized

24

Other findings in the paper

» Failures require no more than 3 nodes to manifest

» Failures can be reproduced offline by unit tests

The triggering events are recorded in system log

» Non-deterministic failures can still be deterministically reproduced

25

Related work

» Error handling code is often buggy [Gunawi’08, Marinescu’|0,
Rubio-Gonzalez’09, Sullivan’91, etc.]

» Studies on distributed system failures [Gray’85,
Oppenheimer’03, Rabkin’1 3, etc.]

» Distributed system testing [ChaosMonkey, Gunawi’l I, Guo’l I,
HadoopFaultlnjection, Killian’07, Leesatapornwongsa’ 1 4,Yang’09, etc.]

26

Conclusions

» Failures are the results of complex sequence of events

» Catastrophic failures are caused by incorrect error handling
Many are caused by a small set of trivial bug patterns

» Aspirator: a simple rule-based static checker

Found 143 confirmed new bugs and bad practices

27

Unexpected fun: comments in error handlers

/* If this happens, hell will unleash on earth. */

/* FIXME: this is a buggy logic, check with alex. */
/* TODO: this whole thing is extremely brittle. */

/* TODO: are we sure this is OK? */

/* I really thing we should do a better handling of these
* exceptions. I really do. */

/* I hate there was no piece of comment for code
* handling race condition.

* God knew what race condition the code dealt with! */

Source code and dataset: Thanks! @

http://www.eecg.toronto.edu/failureAnalysis/ UNIVERSITY OF
28 - ' TORONTO

