

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Rodrigues, Xu Zhao,

Yongle Zhang, Pranay U. Jain and Michael Stumm

University of Toronto

Simple testing can prevent most critical failures
-- An analysis of production failures in

distributed data-intensive systems

Code and dataset:
http://www.eecg.toronto.edu/failureAnalysis/

Key findings

2

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling
}  Many are caused by a small set of trivial bug patterns

}  Aspirator: a simple rule-based static checker
}  Found 143 confirmed new bugs and bad practices

Distributed system failures can be deadly

Amazon AWS outage downs Reddit, Quora, Foursquare,
Instagram, NetFlix, and about 70 other sites.

Google outage: Internet traffic plunges 40%.

Facebook goes down; users called 911.

3

}  Study end-to-end failure propagation sequence

}  Reveal the minimum conditions to expose failures
}  Reveal the weakest link

}  Previous works only studied elements in isolation

A thorough analysis of real-world failures

Fault (root cause),
e.g., bug, h/w fault,

misconfiguration, etc.

Failure,
visible to user/admin.

Error (exception),
e.g., system-call
error return

4

}  Randomly sampled 198 user-reported failures*
}  Carefully studied the discussion and related code/patch
}  Reproduced 73 to understand them

}  48 are catastrophic --- they affect all or a majority of users

Study methodology

Software Program
language

Sampled failures

Total Catastrophic

Cassandra Java 40 2

HBase Java 41 21

HDFS Java 41 9

Hadoop MapReduce Java 38 8

Redis C 38 8

Total - 198 48

5 * Analysis of each failure can be found at: http://www.eecg.toronto.edu/failureAnalysis/

Outline

6

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling
}  Many are caused by trivial bugs

}  Aspirator: a simple rule-based static checker

/*	
 Master:	
 delete	
 the	
 	

	
 *	
 ZooKeeper	
 znode	
 after	
 	

	
 *	
 the	
 region	
 is	
 opened	
 */	

try	
 {	

	
 	
 deleteZNode();	

}	
 catch	
 (KeeperException	
 e)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 cluster.abort(“…”);	

An example

User: “Sudden outage on the entire HBase cluster. ”

Not handled
properly

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

7

}	

/*	
 Master:	
 delete	
 the	
 	

	
 *	
 ZooKeeper	
 node	
 after	
 	

	
 *	
 the	
 region	
 is	
 opened	
 */	

try	
 {	

	
 	
 deleteZNode();	

}	
 catch	
 (KeeperException	
 e)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 cluster.abort(“…”);	

}	

Finding I: multiple events are required

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

8

77% of the failures require more
than one input events

Only occur on
long-running
system (38%)

/*	
 Master:	
 delete	
 the	
 	

	
 *	
 ZooKeeper	
 node	
 after	
 	

	
 *	
 the	
 region	
 is	
 opened	
 */	

try	
 {	

	
 	
 deleteZNode();	

}	
 catch	
 (KeeperException	
 e)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 cluster.abort(“…”);	

}	

Finding II: event order matters

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

9

Order of events is important in 88% of
the multi-events failures

/*	
 Master:	
 delete	
 the	
 	

	
 *	
 ZooKeeper	
 node	
 after	
 	

	
 *	
 the	
 region	
 is	
 opened	
 */	

try	
 {	

	
 	
 deleteZNode();	

}	
 catch	
 (KeeperException	
 e)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 cluster.abort(“…”);	

}	

Finding III: timing matters

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

10

26% of the failures are non-deterministic

Complexity is not surprising

11

}  These systems undergo thorough testing
}  Must provide unit test for every patch
}  Use static checker on every check-in
}  Use fault injection testing [HadoopFaultInjection]

}  Designed to provide high availability
}  E.g., automatic failover on master failures

Outline

12

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling
}  Catastrophic failures: those affect all or a majority of the users

}  Aspirator: a rule-based static checker

Breakdown of catastrophic failures
C

atastrophic failures (100%
)

Undetected Error

Error detected, but
wrongly handled

92%

8%

13

Faults

}  Error handling code is the last line of defense [Marinescu&Candea’11]

92% of catastrophic failures are the result of incorrect error handling

Trivial mistakes in error handling code
C

atastrophic failures (100%
)

Faults

Undetected Error

Error detected, but
wrongly handled

92%

8%

14

Trivial mistakes (35%)

Complex bugs (34%)

System specific, but
easily detectable (23%)

Errors ignored (25%)
Abort in over-catch (8%)
“TODO” in handler (2%)

	

	

	
 	
 	
 	

}	
 catch	
 (Throwable	
 t)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 abort	
 (“…”);	

}	

NonFatalException	

	
 FatalException	

Example of abort in over-catch

A failure caused by trivial mistake

15

User:
“MapReduce jobs hang when a rare Resource Manager
restart occurs. I have to ssh to every one of our 4000 nodes in
a cluster and kill all jobs. ”

catch	
 (RebootException)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 //	
 TODO	

	
 	
 LOG(“Error	
 event	
 from	
 RM:	
 shutting	
 down...”);	

	

}	

+	
 eventHandler.handle(exception_response);	

Easily detectable bugs
C

atastrophic failures (100%
)

Faults

Undetected Error

Error detected, but
wrongly handled

92%

8%

16

Trivial mistakes (35%)

Complex bugs (34%)

System specific, but
easily detectable (23%)

Completely wrong

/*	
 Master:	
 delete	
 the	
 	

	
 *	
 ZooKeeper	
 znode	
 after	
 	

	
 *	
 the	
 region	
 is	
 opened	
 */	

try	
 {	

	
 	
 deleteZNode();	

}	
 catch	
 (KeeperException	
 e)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 cluster.abort(“…”);	

}	

The HBase example: an easily detectable bug

Completely wrong

Event 1: Load balance: transfer Region R from slave A to B

Event 2: Slave B dies

R is assigned to slave C

Slave B opens R

Slave C opens R

17

}  Difficult to be triggered; easily detectable by code review

Over half are trivial or easily detectable bugs
C

atastrophic failures (100%
)

Faults

Undetected Error

Error detected, but
wrongly handled

92%

8%

18

Trivial mistakes (35%)

Complex bugs (34%)

System specific, but
easily detectable (23%)

Outline

19

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling

}  Aspirator: a simple rule-based static checker

Aspirator: a static checker for Java programs

}  Three rules on exception handling
}  Not empty
}  Not abort on exception over-catch
}  No “TODO” or “FIXME” comment

}  False positive suppression techniques (details in paper)

}  Over 1/3 of catastrophic failures could have been prevented
}  If aspirator has been used and identified bugs fixed

20 All source code of aspirator is at: http://www.eecg.toronto.edu/failureAnalysis/

Checking real-world systems

System Bugs Bad practice False positive

Cassandra 2 2 9

HBase 16 43 20

HDFS 24 32 16

Hadoop MapRed.2 13 15 1

Cloudstack 27 185 20

Hive 25 54 8

Tomcat 7 23 30

Spark 2 1 2

Zookeeper 5 24 9

Total 121 379 115

21

new bugs in every system

Training set

Testing set

New bugs can lead to catastrophic failures

22

}  Hang system

}  Data loss

}  Cluster crash
}  E.g., bugs found by “abort in over-catch” check

try	
 {	

	
 	
 tableLock.release();	

}	
 catch	
 (IOException	
 e)	
 {	

	
 	
 LOG("Can't	
 release	
 lock”,	
 e);	

}	

try	
 {	

	
 	
 journal.recover();	

}	
 catch	
 (IOException	
 ex)	
 {	

	
 	

}	

Cannot recover
updates from journal

Mixed feedbacks from developers

23

}  Reported 171 new bugs/bad practices
}  143 confirmed/fixed; 17 rejected; no response for the rest

“I fail to see the reason to handle every exception.”

“No one would have looked at this hidden feature; ignoring
exceptions is bad precisely for this reason”

 “I really want to fix issues in this line, because I really want us to
use exceptions properly and never ignore them”

Why do developers ignore error handling?

24

}  Developers think the errors will never happen
}  Code evolution may enable the errors
}  The judgment can be wrong

}  Error handling is difficult

}  Errors can be returned by 3rd party libraries

}  Feature development is prioritized

}	
 catch	
 (IOException	
 e)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 //	
 will	
 never	
 happen	

}	

}	
 catch	
 (NoTransitionException	
 e)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 /*	
 Why	
 this	
 can	
 happen?	
 Ask	
 God	
 not	
 me.	
 */	

}	

Other findings in the paper

25

}  Failures require no more than 3 nodes to manifest

}  Failures can be reproduced offline by unit tests
}  The triggering events are recorded in system log

}  Non-deterministic failures can still be deterministically reproduced

Related work

}  Error handling code is often buggy [Gunawi’08, Marinescu’10,
Rubio-González’09, Sullivan’91, etc.]

}  Studies on distributed system failures [Gray’85,
Oppenheimer’03, Rabkin’13, etc.]

}  Distributed system testing [ChaosMonkey, Gunawi’11, Guo’11,
HadoopFaultInjection, Killian’07, Leesatapornwongsa’14, Yang’09, etc.]

26

Conclusions

27

}  Failures are the results of complex sequence of events

}  Catastrophic failures are caused by incorrect error handling
}  Many are caused by a small set of trivial bug patterns

}  Aspirator: a simple rule-based static checker
}  Found 143 confirmed new bugs and bad practices

Unexpected fun: comments in error handlers

28

/*	
 FIXME:	
 this	
 is	
 a	
 buggy	
 logic,	
 check	
 with	
 alex.	
 */	

/*	
 TODO:	
 this	
 whole	
 thing	
 is	
 extremely	
 brittle.	
 */	

/*	
 If	
 this	
 happens,	
 hell	
 will	
 unleash	
 on	
 earth.	
 */	
 	

	
 /*	
 TODO:	
 are	
 we	
 sure	
 this	
 is	
 OK?	
 */	

	
 /*	
 I	
 really	
 thing	
 we	
 should	
 do	
 a	
 better	
 handling	
 of	
 these	
 	

	
 	
 *	
 exceptions.	
 I	
 really	
 do.	
 */	

Source code and dataset:
http://www.eecg.toronto.edu/failureAnalysis/

/*	
 I	
 hate	
 there	
 was	
 no	
 piece	
 of	
 comment	
 for	
 code	

	
 *	
 handling	
 race	
 condition.	
 	

	
 *	
 God	
 knew	
 what	
 race	
 condition	
 the	
 code	
 dealt	
 with!	
 */	

Thanks!

