
  

Characterizing Storage Workloads 
with Counter Stacks

Jake Wires, Stephen Ingram, Zachary Drudi, 
Nicholas J. A. Harvey, Andrew Warfield

Coho Data, UBC



  

Memory Hierarchies



  

Memory Hierarchies



  

Challenge: Provisioning

  512 GB DRAM     +    8 TB SATA SSDs     =   $4,200      8.5 TB     10K – Millions IOPS

  1.6 TB PCIe Flash    +       12 TB HDDs        =  $12,000    13.6 TB     2.4K – 2M IOPS

8 GB NVDIMM       +     60 TB JBOD         =   $8,000         60 TB     12K – Millions IOPS



  

Challenge: Provisioning

  512 GB DRAM     +    8 TB SATA SSDs     =   $4,200      8.5 TB     10K – Millions IOPS

  1.6 TB PCIe Flash    +       12 TB HDDs        =  $12,000    13.6 TB     2.4K – 2M IOPS

8 GB NVDIMM       +     60 TB JBOD         =   $8,000         60 TB     12K – Millions IOPS

???



  

Challenge: Placement



  

Workload Characterization

● Provisioning and placement are difficult 
problems

●  What are the key workload characteristics 
we can use to solve these problems?



  

Optimal

MIN (Belady, '66): prioritize pages with shortest forward distance



  

Practical

LRU: prioritize pages with shortest reuse distance



  

Practical

LRU: prioritize pages with shortest reuse distance

Warning:
past behavior

does not predict
future performance.



  

Reuse Distances

● # of distinct symbols since previous reference

● Measure of workload locality
● Model of memory behavior

3
1

3

A   B   C   A   A   B



  

Miss Ratio Curves

● A plot of miss rate vs. cache size for a given 
workload under a given replacement policy
– With LRU, this is the distribution of reuse 

distances



  

Miss Ratio Curves



  

Miss Ratio Curves
you miss this often

if your cache is this big



  

Miss Ratio Curves

low value, high cost

high value, low cost



  

Miss Ratio Curves

        Hardware Monitor                       Web Proxy                        Web/SQL Server



  

Miss Ratio Curves

                One Hour                             Twelve Hours                             One Week



  

Computing MRCs

● Naïve approach

– Simulate workload once at each cache size



  

Computing MRCs

● Naïve approach

– Simulate workload once at each cache size



  

Computing MRCs

● Mattson's Stack Algorithm ('70)

– Some replacement policies are inclusive
● Larger caches always include contents of smaller 

caches



  

Computing MRCs

● Mattson's Stack Algorithm ('70)

– Some replacement policies are inclusive
● Larger caches always include contents of smaller 

caches
– LRU, LFU, MIN, ...

– For such policies, simulate all cache sizes in one pass
● Hits at size N are hits at all M > N



  

Stack Algorithm for LRU

● To compute miss ratio curves for LRU:

– Compute reuse distance of each request

– Aggregate distances in a histogram

– Compute the cumulative sum (CDF)



  

Stack Algorithm for LRU

● Complexity (N records, M unique symbols):

– Time: O(N * M)
● Reduced to O(N * log(N)) (Bennett et al., '75)
● Reduced to O(N * log(M)) (Almási et al., '02)

– Space: O(M)



  

Stack Algorithm for LRU

● Complexity (N records, M unique symbols):

– Time: O(N * M)
● Reduced to O(N * log(N)) (Bennett et al., '75)
● Reduced to O(N * log(M)) (Almási et al., '02)

– Space: O(M)
● ...



  

Still Not Practical

● 92 GB RAM to compute MRC of 3 TB workload



  

Still Not Practical

● 92 GB RAM to compute MRC of 3 TB workload



  

Stack Algorithm for LRU

● To compute miss ratio curves for LRU:

– Compute reuse distance of each request

– Aggregate distances in a histogram

– Compute the cumulative sum (CDF)

● Can we do this more efficiently?



  

Stack Algorithm for LRU

● To compute miss ratio curves for LRU:

– Compute reuse distance of each request

– Aggregate distances in a histogram

– Compute the cumulative sum (CDF)

● Can we do this more efficiently? Yes.

– 80 MB for approximate MRC of 3 TB workload



  

Counter Stacks

● Measure uniqueness over time

● Observation: computing reuse distances is 
related to counting distinct elements

● Consider a 'stack' of cardinality counters, one 
for each request



  

Calculating with Counts

Reference String: A



  

Calculating with Counts

Reference String: A
cardinality counter started at t

0 1



  

Calculating with Counts

Reference String: A B
cardinality counter started at t

0 1



  

Calculating with Counts

Reference String: A B
cardinality counter started at t

0 1 2



  

Calculating with Counts

Reference String: A B
cardinality counter started at t

0 1 2
cardinality counter started at t

1 1



  

Calculating with Counts

Reference String: A B C
cardinality counter started at t

0 1 2
cardinality counter started at t

1 1



  

Calculating with Counts

Reference String: A B C
cardinality counter started at t

0 1 2 3
cardinality counter started at t

1 1



  

Calculating with Counts

Reference String: A B C
cardinality counter started at t

0 1 2 3
cardinality counter started at t

1 1 2



  

Calculating with Counts

Reference String: A B C
cardinality counter started at t

0 1 2 3
cardinality counter started at t

1 1 2
cardinality counter started at t

2 1



  

Calculating with Counts

Reference String: A B C A
cardinality counter started at t

0 1 2 3
cardinality counter started at t

1 1 2
cardinality counter started at t

2 1



  

Calculating with Counts

Reference String: A B C A
cardinality counter started at t

0 1 2 3 3
cardinality counter started at t

1 1 2
cardinality counter started at t

2 1



  

Calculating with Counts

Reference String: A B C A
cardinality counter started at t

0 1 2 3 3
cardinality counter started at t

1 1 2 3
cardinality counter started at t

2 1



  

Calculating with Counts

Reference String: A B C A
cardinality counter started at t

0 1 2 3 3
cardinality counter started at t

1 1 2 3
cardinality counter started at t

2 1 2



  

Calculating with Counts

Reference String: A B C A
cardinality counter started at t

0 1 2 3 3
cardinality counter started at t

1 1 2 3
cardinality counter started at t

2 1 2
cardinality counter started at t

3 1



  

Calculating with Counts

Reference String: A B C A
cardinality counter started at t

0 1 2 3 3
cardinality counter started at t

1 1 2 3
cardinality counter started at t

2 1 2
cardinality counter started at t

3 1

+0

+1

Observation 1: A difference in the change between adjacent 
counters implies a repeated reference.



  

Calculating with Counts

Reference String: A B C A
cardinality counter started at t

0 1 2 3 3
cardinality counter started at t

1 1 2 3
cardinality counter started at t

2 1 2
cardinality counter started at t

3 1

+0

+1

Observation 1: A difference in the change between adjacent 
counters implies a repeated reference.

Observation 2: The location of the difference stores the reuse 
distance.



  

Calculating with Counts

A B C A
1 2 3 3

1 2 3
1 2

1

A B C A
1 1 1 0

1 1 1
1 1

1

A B C A
0 0 0 1

0 0 0
0 0

0

∆x ∆y

Matrix C



  

Perfect Counting

● One cardinality counter per request
● Quadratic overhead!



  

Perfect Counting

● ~5 ZB RAM to compute MRC of 3 TB workload



  

Practical Counting

● C is highly redundant

– Space/accuracy tradeoff

A B C A A C A B C A

1 2 3 3 3 3 3 3 3 3

1 2 3 3 3 3 3 3 3

1 2 2 2 2 3 3 3

1 1 2 2 3 3 3

1 2 2 3 3 3

1 2 3 3 3

1 2 3 3

1 2 3

1 2

1



  

Practical Counting

● Downsample

A B C A A C A B C A

1 2 3 3 3 3 3 3 3 3

1 2 3 3 3 3 3 3 3

1 2 2 2 2 3 3 3

1 1 2 2 3 3 3

1 2 2 3 3 3

1 2 3 3 3

1 2 3 3

1 2 3

1 2

1



  

Practical Counting

● Downsample

– Only output every kth counter

A B C A A C A B C A

1 2 3 3 3 3 3 3 3 3

1 2 3 3 3 3 3 3 3

1 2 2 2 2 3 3 3

1 1 2 2 3 3 3

1 2 2 3 3 3

1 2 3 3 3

1 2 3 3

1 2 3

1 2

1



  

Practical Counting

● Downsample

– Only output every kth counter
– Only output every kth count

A B C A A C A B C A

1 2 3 3 3 3 3 3 3 3

1 2 3 3 3 3 3 3 3

1 2 2 2 2 3 3 3

1 1 2 2 3 3 3

1 2 2 3 3 3

1 2 3 3 3

1 2 3 3

1 2 3

1 2

1



  

Practical Counting

● Prune: discard counters with similar values 
(i.e., differing less than pruning distance p)

A B C A A C A B C A

1 2 3 3 3 3 3 3 3 3

1 2 3 3 3 3 3 3 3

1 2 2 2 2 3 3 3

1 1 2 2 3 3 3

1 2 2 3 3 3

1 2 3 3 3

1 2 3 3

1 2 3

1 2

1



  

Practical Counting

● Prune: discard counters with similar values 
(i.e., differing less than pruning distance p)

A B C A A C A B C A

1 2 3 3 3 3 3 3 3 3

1 2 3 3 3 3 3 3 3

1 2 2 2 2 3 3 3

1 1 2 2 3 3 3

1 2 2 3 3 3

1 2 3 3 3

1 2 3 3

1 2 3

1 2

1



  

Approximate Counting

● Estimate: use probabilistic counters



  

Approximate Counting

● Estimate: use probabilistic counters

– HyperLogLog (Flajolet et al., '07)
– Accurate estimates of large multisets with 

sublinear space



  

Counter Stacks

● Sublinear memory overhead
– Practical for online computation



  

Counter Stacks

● Sublinear memory overhead
– Practical for online computation

● But wait, there's more...



  

Counter Stack Streams

● We can compute ∆x, ∆y, and reuse distances 

with only the last two columns of C

● We store all columns on disk as a Counter 
Stack Stream

– Preserves a history of locality



  

Counter Stack Stream Queries



  

Counter Stack Stream Queries

● Search for outliers
● Identify phase changes
● Explore coarse-grain scheduling



  

How Much Do They Cost?

Technique RAM Throughput Storage
Mattson 92 GB 680 K reqs/sec 2.9 GB

high-fidelity CS 80.6 MB  (1168x) 2.29 M reqs/sec  (3.37x) 11 MB    (270x)

low-fidelity CS 78.5 MB  (1200x) 2.31 M reqs/sec  (3.40x) 747 KB  (4070x)

● MSR Cambridge storage traces
● 2.7 TB unique data
● 13 servers, 36 volumes, one week
● 417 million records in 5 GB of gzipped CSV

compression parameters are tunable:
high: k = 106, p = 98%   low: k = 106, p = 90%



  

How Well Do They Work?



  

How Well Do They Work?



  

How Well Do They Work?



  

How Well Do They Work?



  

How Well Do They Work?



  

How Well Do They Work?



  

How Well Do They Work?



  

How Well Do They Work?



  

How Well Do They Work?



  

How Well Do They Work?



  

Conclusions

● Managing data can be data-intensive!

● Counter Stacks measure uniqueness over time

– Low memory and storage overheads

– Easy to capture, process, and store workload histories
● Used in production:

– Collecting traces from the field

– Making online placement decisions

– Forecasting benefits of adding more hardware



  

Thanks!

Questions?



  

How Well Do They Work?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

