The Power of Choice in Data-Aware Cluster Scheduling

Shivaram Venkataraman¹, Aurojit Panda¹ Ganesh Ananthanarayanan², Michael Franklin¹, Ion Stoica¹

¹UC Berkeley, ²Microsoft Research

-amplab//~

Trends: Big Data

Data grows faster than Moore's Law

[Kathy Yelick LBNL, VLDBJ 2012, Dhruba Borthakur] 2

Trends: Big Data

[Kathy Yelick LBNL, VLDBJ 2012, Dhruba Borthakur] 3

Trends: Low Latency 10 min 1 min 10s 2s 2004: 2009: 2010: 2012: MapReduce Hive Dremel In-memory batch job Spark

Big Data or Low Latency ?

SQL Query : 2.5 TB on 100 machines

> 15 minutes

1 - 5 Minutes < 10s

Sampling

Applications

Approximate Query Processing blinkdb, presto, minitable

Machine learning algorithms stochastic gradient, coordinate descent

Choices

Γ	

Sampling -> Smaller Inputs + Choice

Existing

Available (N) = 2

Required (K) = 2

Choice-Aware

Available (N) = 4

Required (K) = 2

Choice-Aware

KMN Scheduler

- How much can KMN improve locality
- Propagate benefits across stages
- Handling stragglers

One-to-One Stages

Locality

Disk ~ 100MB/s Network ~ 10 Gbps (~1GB/s) Memory ~ 50GB/s

KMN Locality

Locality, K=100

K – Number of blocks chosenN – Number of blocks available

Many-to-One Stages

Many-to-One Stage

15 transfers

Many-To-One Transfers

Bottleneck Link

Bottleneck Link

Link with Max. transfers

Cross Rack Data Skew

Maximum transfers Minimum transfers

$$=\frac{6}{2}=3$$

Facebook Trace

Cross Rack Data Skew —

Maximum transfers

Minimum transfers

Power of Choice

Load balancing: balls and bins

Insight: Run extra tasks (M > K)

Cross Rack Data Skew = 3

Power of Choice

Technique: Spread out choice of K tasks to reduce skew

M = 7, K = 5 Cross Rack Data Skew = 2

Handling Stragglers

Using KMN

// Create Spark RDD
file = sc.textFile("tpc-h.data")

// Select a 10% sample using KMN
sample = file.blockSample(0.1)

```
// RDD operations
sample.map { li =>
  (li.linestatus, li.quantity)
}.collect()
```

Also in the paper

User-defined sampling functions

Placing reduce tasks

Killing extra tasks

Evaluation

Facebook traces replay Long DAGs (Stochastic Gradient Descent) SQL queries from Conviva Reducer placement Varying Utilization

Baseline: Use a pre-selected random sample Setup: 100 m2.4xlarge EC2 machines, 60GB RAM/mc

Facebook Overall

Cross Rack Skew

How many extra tasks ?

Stochastic Gradient Descent

Gradient

Related Work

Power of Choice Power-of-Two choices [TPDS'01] Sparrow [SOSP'13]

Improving Cluster Scheduling Quincy [SOSP'09] alsched [SOCC'12] Dolly [NSDI'13]

KMN Scheduler

Emerging applications: ML algorithms, AQP Improves locality, Balances network transfers