
Protecting Users by Confining
JavaScript with COWL

Deian Stefan, Edward Z. Yang, Petr Marchenko,  
Alejandro Russo, Dave Herman, Brad Karp, David Mazières

The Web
No longer just a way of publishing static content

Core reason: Easy to create complex client-side apps

➤ Combine code and data from different parties!  
 

The Web
Now app platform; lot of client-side functionality

Many apps handle sensitive data

Political views Location infoFinances

What do browsers do to ensure that the weather
site cannot access my bank statements?

Third-party code? Sensitive data?

chase.com

weather.com

Idea: isolate content from different origins

➤ Compartmentalize code into contexts (tabs, iframes,…)

➤ Disallow cross-origin reads from contexts & servers  
 
 
 
 
 
 

In the beginning: Same-origin Policy

chase.com

chase.com

weather.com weather.com

Idea: isolate content from different origins

➤ Compartmentalize code into contexts (tabs, iframes,…)

➤ Disallow cross-origin reads from contexts & servers  
 
 
 
 
 
 

In the beginning: Same-origin Policy

chase.com

chase.com

weather.com weather.com

Idea: isolate content from different origins

➤ Compartmentalize code into contexts (tabs, iframes,…)

➤ Disallow cross-origin reads from contexts & servers  
 
 
 
 
 
 

In the beginning: Same-origin Policy

chase.com

chase.com

weather.com weather.com

❌

❌

❌

Problems with SOP

Not strict enough:  
can disclose data arbitrarily

➤ Third-party code can leak data

➤ Code runs with authority of page

Not flexible enough:  
can’t read cross-origin data

➤ No secure third-party mashups!

chase.com evil.biz

mint.cc

chase.com

hsbc.com

❌

❌

chase.com evil.biz

mint.cc

chase.com

hsbc.com

Today: SOP + CSP + CORS

Content Security Policy:

➤ Whitelist origins page can
communicate with  

Cross-origin Resource Sharing:

➤ Server whitelists origins allowed
to read the data ✓

❌

❌

Today: SOP + CSP + CORS

Discretionary
Access
Control

Content Security Policy:

➤ Whitelist origins page can
communicate with  

Cross-origin Resource Sharing:

➤ Server whitelists origins allowed
to read the data

DAC is not enough!

Forces choice between functionality and privacy

➤ E.g., mint.com-like client-side third-party mashup  
 
 
 

➤ Privacy: bank doesn’t give mint.cc access to data

➤ Functionality: bank cedes user data to mint.cc  
 (or worse: user cedes bank credentials)

mint.cc
chase.com hsbc.com

? ?

Reality: we give up privacy for functionality!

DAC is not enough!

Mutually distrusting services

docs.google.com

eff.org

Libraries with narrow APIs

chase.com

sketchy.ru

Tightly-coupled libraries

chase.com

DAC is not enough!

Third-party mashups

hsbc.com

mint.cc

chase.com

Third-party code + sensitive data

Challenge: allow untrusted code to compute on data

➤ E.g., chase wants to use password-strength checker  
 library needs to fetch list of common passwords

- Safe to fetch list before looking at password!

Need: confinement (MAC)

➤ Impose restrictions on how code uses data  
 
 

chase.com sketchy.ru sketchy.ru

p4ssw0rd

Third-party code + sensitive data

Challenge: allow untrusted code to compute on data

➤ E.g., chase wants to use password-strength checker  
 library needs to fetch list of common passwords

- Safe to fetch list before looking at password!

Need: confinement (MAC)

➤ Impose restrictions on how code uses data  
 
 

chase.com sketchy.ru sketchy.ru

p4ssw0rd ❌

Third-party code + sensitive data

Challenge: allow untrusted code to compute on data

➤ E.g., chase wants to use password-strength checker  
 library needs to fetch list of common passwords

- Safe to fetch list before looking at password!

Need: confinement (MAC)

➤ Impose restrictions on how code uses data  
 
 

chase.com sketchy.ru sketchy.ru

p4ssw0rd

p4ssw0rd ❌p4ssw0rd

Third-party code + sensitive data

Challenge: allow untrusted code to compute on data

➤ E.g., chase wants to use password-strength checker  
 library needs to fetch list of common passwords

- Safe to fetch list before looking at password!

Need: confinement (MAC)

➤ Impose restrictions on how code uses data  
 
 

chase.com sketchy.ru sketchy.ru

p4ssw0rd

p4ssw0rd ❌
weak!

p4ssw0rd

Isn’t confinement a solved problem?
 Confinement for Haskell ➠ Hails

 Confinement for Java ➠ Jif!

Change JavaScript to enforce IFC with JSFlow

Dev…

Design constraints

• Can’t expect developers to learn new language

• Can’t touch JavaScript runtime

➤ Highly optimized JITs

➤ Add 1 instruction on hot path ➠ no upstream!

• Can’t radically change the security model

➤ Ingrained notion of principals: origins

➤ Keep iframes, pages, etc. as security boundaries

The good news

Web turns out to be a good fit for confinement

By accident…

…if you just look at it right

The good news

• Browsers already offer execution contexts

➤ Isolation enforced across context boundaries

• Can enforce MAC at context granularity

➤ No need to change language runtime! [BFlow]

• Can easily add new DOM-level APIs

➤ Attach policies to messages [Hails]

Key (old) concepts: expressed in practical way?

1. Labels: using origins to specify MAC policies

2. Labeled communication: security across contexts

➤ Avoid changing existing communication APIs

3. Privileges: using origins to manage trust

Confinement with Origin Web
Labels (COWL)

Labels

• Every piece of data is protected by a label

• Label specifies, in terms of origin(s), who cares
about the data
➤ E.g., data sensitive to Chase: Label(“chase.com”)

➤ E.g., data sensitive to both Chase and HSBC:
Label(“chase.com”).and(“hsbc.com”) 
 
 

chase.com

chase.com

p4ssw0rd

hsbc.com

hsbc.com

Label tracking

• COWL tracks labels at context/server granularity

➤ Pages, iframes, workers, servers

• Messages can be labeled differently from context

➤ Both servers & JavaScript can label messages

➤ The right way to share sensitive data!

chase.com

chase.com

chase.com

public

p4ssw0rd

chase.com

Labeled Communication

• Browser-server communication must respect
labels!  
 
 
 

chase.com
sketchy.ru

p4ssw0rd
chase.com

❌

sketchy.ruchase.com

Labeled Communication

• Communication across browser contexts must
respect label 
 
 

chase.com

sketchy.ru

sketchy.ru

chase.com sketchy.ru

public

❌

Labeled Communication

• Communication across browser contexts must
respect label 
 
 

chase.com

sketchy.ru

sketchy.ru

chase.com sketchy.ru

public

❌

Labeled Communication

• Communication across browser contexts must
respect label 
 
 

chase.com

sketchy.ru

sketchy.ru

chase.com sketchy.ru

public
p4ssw0rd

❌

chase.com

❌

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

public

sketchy.ru
sketch.rup4ssw0rd

public

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

p4ssw0rd

chase.compublic

sketchy.ru
sketch.rup4ssw0rd

public

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

p4ssw0rd

chase.compublic

sketchy.ru
sketch.rup4ssw0rd

public

p4ssw0rd

chase.com

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

chase.com

p4ssw0rd

chase.compublic

sketchy.ru
sketch.rup4ssw0rd ❌

public

p4ssw0rd

chase.com

Adjusting labels to read data

• Contexts can adopt more restrictive label

➤ I.e., add an origin to its label

➤ Can then read data from that origin

➤ Give up ability to write to contexts without it 
 
 

sketchy.ru

chase.com

p4ssw0rd

chase.compublic

sketchy.ru
sketch.rup4ssw0rd ❌

public

p4ssw0rd

weak!

1. Origins are a natural way to specify labels

2. Leverage contexts as security boundaries

➤ Mixed-granularity: label messages

3. Use origins to express privileges (see paper)

Summary: COWL design
Web was made for confinement

What can we do with this?

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

chase.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

hsbc.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

chase.com

❌

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

chase.com hsb.com

❌❌

• Read-only client-side personal finance service  
 
 
 
 

• Banks can make labeled statements available
to Mint ➠ Flexibility+Privacy!

Example: client-side Mint

mint.cc
chase.com hsbc.com

chase.com hsb.com

❌❌

We built it…

Implementations

• DOM-level API for both Firefox and Chromium

➤ No changes to JavaScript engines

➤ Maintain existing communication APIs

➤ For each page COWL only enabled on first use of API

• Gecko and Blink: roughly 4K lines of C++ each

Evaluation: Performance

• Overhead of securing a mashup service?

• Overhead of compartmentalization?

• Will adding COWL slow the existing Web?

Evaluation: Performance

• Overhead of securing a mashup service?

• Overhead of compartmentalization?

• Will adding COWL slow the existing Web?

 Worst-case (loopback, trivial app code) 
 end-to-end page load: roughly 16% [16ms]  
!

 For real apps: relative overhead is small!

Mutually distrusting services

docs.google.com

eff.org

Libraries with narrow APIs

chase.com

sketchy.ru

Tightly-coupled libraries

chase.com

Evaluation: Applicability

Third-party mashups

hsbc.com

mint.cc

chase.com

Deployability

• High degree of backward compatibility

➤ Does not affect pages that do not use COWL API

• Reuse existing concepts (origins, contexts)

➤ Expect it to be friendly to developers

• Implementations possible for major browsers

➤ Changes don’t touch JavaScript engine

Limitations & future work

• Covert channels

➤ Malicious code may still covertly leak data

➤ COWL enforces MAC in addition to existing DAC

• Compartmentalization

➤ Cannot just label and run existing apps

➤ Compartmentalizing applications requires thought

Related work

• Coarse-grained confinement: BFlow

➤ Mainly concerned with untrusted code

➤ COWL also handles the mutually distrusting case

• Fine-grained confinement: JSFlow

➤ Better fit for tightly-coupled libraries

➤ New semantics, 100x slowdown

Conclusion

Today: give up privacy for flexibility
➤ Modern web apps need to compute on sensitive data

➤ DAC is crucial, but insufficient!

COWL: confinement for client-side code
➤ Naturally extends the existing web model

➤ Achieves both flexibility and privacy without slowdown

Thanks!
http://cowl.ws

