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The joys of driver development

● Drivers are hard to write
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● They often delay product delivery

● … and are the most common source of 
OS failures
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Driver Synthesis as a Game

driver

OS requests

device

physical I/O

completion callbacks

● Driver synthesis can be formalised as a two-player 
game: driver vs (device + OS)
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Termite Tool Demo
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Push-Button Synthesis (SOSP'09)

spec code

correct spec => correct implementation

● In theory:

● In practice: (based on our experience) taking control 
away from the developer is not a good idea
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Push-Button Synthesis (SOSP'09)

● Choosing a preferred implementation method is hard 
(e.g., polling vs interrupts)

● Non-functional properties (power, performance, 
timing, etc.) are hard to enforce

● Achieving “nice” code structure is hard
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User-Guided Synthesis

● The user is in control
● can write arbitrary manual code or …  

● arbitrarily alter automatically generated code

● Synthesiser works as smart auto-complete
● can generate a statement, a function, or even the whole driver 

(on demand)

● never alters user code

● completes synthesised+manual code to a correct 
implementation when possible

● The tool enforces correctness
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Demo (continued)
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Guided Synthesis
Scenario 1: Fully Automatic Synthesis

send(){
    ...
}

receive(){
    ...
}

driver template

send(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,snd);

}

receive(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,rcv);

}

synthesised driver
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Guided Synthesis
Scenario 2: Hybrid Approach

send(){
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}
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    ...
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}

partially
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Guided Synthesis
Scenario 2: Hybrid Approach

send(){
  write(ctl,0);

  ...
}

receive(){
  ...
}

modified driver template synthesised driver
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Guided Synthesis
Scenario 3: Verification

manually developed 
driver

send(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,snd);

}

receive(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,rcv);

}

√
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Obtaining Specs for Driver Synthesis

driver.c

OS interface
spec

device spec

The synthesis paradox:
developing the spec is harder 

than writing the driver “by hand”.
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Obtaining Specs for Driver Synthesis

driver.c

OS interface
spec

device spec

OS specs are generic, i.e., 
made once for a class of devices
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Obtaining Specs for Driver Synthesis

driver.c

OS interface
spec

device spec

device specs obtained 
from  hardware developers
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Synthesised Drivers

Device Synthesis time 
(s)

locs

Real-time clock 74 56

IDE 71 94

STM32F103RB UART 309 74

exynos 5 UART 177 35

STM32F103RB I2C 39 119

exynos 5 I2C 40 77

webcam 190 113

SPI 15 27
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Scope and Limitations

● Focus on synthesising device control logic
● Resource allocation, binding to OS interfaces, etc., must be 

written manually or synthesised using different techniques

● Sequential synthesis
● Synchronisation synthesis as a separate step  (jointly with 

CU Boulder and IST Austria)

● No DMA support
● WiP
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Summary 

https://github.com/termite2

http://termite2.org

● Termite automates tedious driver development

● The user has full control over the source code, but 
Termite enforces correctness
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Summary 

https://github.com/termite2

http://termite2.org

● Termite automates tedious driver development

● The user has full control over the source code, but 
Termite enforces correctness

● Driver synthesis is less impossible than previously 
believed


