
1

User-Guided Device Driver Synthesis
Leonid Ryzhyk Adam Walker John Keys

Alexander Legg Arun Raghunath Michael Stumm

Mona Vij

2

The joys of driver development

● Drivers are hard to write

● … and even harder to debug

● They often delay product delivery

● … and are the most common source of
OS failures

3

The joys of driver development

● Drivers are hard to write

● … and even harder to debug

● They often delay product delivery

● … and are the most common source of
OS failures

Funded by a research grant from Intel

4

Observation

driver.c

OS interface
spec

device spec

● Driver development is a mechanical task

● Can in principle be automated

5

Observation

driver.c

OS interface
spec

device spec

● Driver development is a mechanical task

● Can in principle be automated

6

Driver Synthesis as a Game

driver

OS requests

device

physical I/O

completion callbacks

● Driver synthesis can be formalised as a two-player
game: driver vs (device + OS)

7

Motivation

8

Motivation

Addresses an important problem

9

Motivation

Addresses an important problem A simple, neat idea

10

Motivation

Addresses an important problem A simple, neat idea

One of few applications of FM to
OS (beyond verification)

+

11

Motivation

Addresses an important problem A simple, neat idea

Considered impossibleOne of few applications of FM to
OS (beyond verification)

+

12

driver.c

OS interface
spec

device spec

13

driver.c

OS interface
spec

device spec

14

driver.c

OS interface
spec

device spec

15

driver.c

OS interface
spec

device spec

16

Driver Synthesis as a Game

 9:59:59

17

Driver Synthesis as a Game

request:set_time(19:30:00)

 9:59:59

18

Driver Synthesis as a Game

request:set_time(19:30:00)

write_hours(19)

19:59:59

19

Driver Synthesis as a Game

request:set_time(19:30:00)

write_hours(19)

write_minutes(30)

19:30:59

20

Driver Synthesis as a Game

request:set_time(19:30:00)

write_hours(19)

write_minutes(30)

write_seconds(00)

19:30:00

21

Driver Synthesis as a Game

request:set_time(19:30:00)

write_hours(19)

TICK

19:59:59

22

Driver Synthesis as a Game

request:set_time(19:30:00)

write_hours(19)

TICK

20:00:00

23

Driver Synthesis as a Game

request:set_time(19:30:00)

write_hours(19)

TICK

write_minutes(30)

write_seconds(00)

20:30:00

24

Driver Synthesis as a Game

request:set_time(19:30:00)

STOP

write_hours(19)

write_minutes(30)

write_seconds(00)

START19:30:00

25

Driver Synthesis as a Game

9:59:59

26

Driver Synthesis as a Game

set_time(19:30:00)

9:59:59

9:59:59

27

Driver Synthesis as a Game

set_time(19:30:00)

9:59:59

9:59:59

19:30:00

?

28

Driver Synthesis as a Game

set_time
9:59:59

9:59:59

19:59:59

19:30:59

19:30:00

20:00:00

20:30:00

20:30:00

9:59:59

19:59:59

19:30:59

19:30:00

write_hours

write_minutes

write_seconds

write_minutes

write_seconds

write_hours

write_minutes

write_seconds

STOP

START

START

START

TICK

TICK

TICK

10:00:00

STOP

29

Driver Synthesis as a Game

set_time
9:59:59

9:59:59

19:59:59

19:30:59

19:30:00

20:00:00

20:30:00

20:30:00

9:59:59

19:59:59

19:30:59

19:30:00

write_hours

write_minutes

write_seconds

write_minutes

write_seconds

write_hours

write_minutes

write_seconds

STOP

START

START

START

TICK

TICK

TICK

10:00:00

STOP

30

Driver Synthesis as a Game

set_time
9:59:59

9:59:59

19:59:59

19:30:59

19:30:00

20:00:00

20:30:00

20:30:00

9:59:59

19:59:59

19:30:59

19:30:00

write_hours

write_minutes

write_seconds

write_minutes

write_seconds

write_hours

write_minutes

write_seconds

STOP

START

START

START

TICK

TICK

TICK

10:00:00

STOP

31

Driver Synthesis as a Game

set_time
9:59:59

9:59:59

19:59:59

19:30:59

19:30:00

20:00:00

20:30:00

20:30:00

9:59:59

19:59:59

19:30:59

19:30:00

write_hours

write_minutes

write_seconds

write_minutes

write_seconds

write_hours

write_minutes

write_seconds

STOP

START

START

START

TICK

TICK

TICK

10:00:00

STOP

32

Driver Synthesis as a Game

set_time
9:59:59

9:59:59

19:59:59

19:30:59

19:30:00

20:00:00

20:30:00

20:30:00

9:59:59

19:59:59

19:30:59

19:30:00

write_hours

write_minutes

write_seconds

write_minutes

write_seconds

write_hours

write_minutes

write_seconds

STOP

START

START

START

TICK

TICK

TICK

10:00:00

STOP

33

Driver Synthesis as a Game

set_time
9:59:59

9:59:59

19:59:59

19:30:59

19:30:00

20:00:00

20:30:00

20:30:00

9:59:59

19:59:59

19:30:59

19:30:00

write_hours

write_minutes

write_seconds

write_minutes

write_seconds

write_hours

write_minutes

write_seconds

STOP

START

START

START

TICK

TICK

TICK

10:00:00

STOP

34

Driver Synthesis as a Game

set_time
9:59:59

9:59:59

19:59:59

19:30:59

19:30:00

20:00:00

20:30:00

20:30:00

9:59:59

19:59:59

19:30:59

19:30:00

write_hours

write_minutes

write_seconds

write_minutes

write_seconds

write_hours

write_minutes

write_seconds

STOP

START

START

START

TICK

TICK

TICK

10:00:00

STOP

35

Driver Synthesis as a Game

set_time
9:59:59

9:59:59

19:59:59

19:30:59

19:30:00

20:00:00

20:30:00

20:30:00

9:59:59

19:59:59

19:30:59

19:30:00

write_hours

write_minutes

write_seconds

write_minutes

write_seconds

write_hours

write_minutes

write_seconds

START

START

START

TICK

TICK

TICK

10:00:00

STOP

STOP

36

Termite Tool Demo

37

Push-Button Synthesis (SOSP'09)

spec code

correct spec => correct implementation

● In theory:

● In practice: (based on our experience) taking control
away from the developer is not a good idea

38

Push-Button Synthesis (SOSP'09)

● Choosing a preferred implementation method is hard
(e.g., polling vs interrupts)

● Non-functional properties (power, performance,
timing, etc.) are hard to enforce

● Achieving “nice” code structure is hard

39

User-Guided Synthesis

● The user is in control
● can write arbitrary manual code or …

● arbitrarily alter automatically generated code

● Synthesiser works as smart auto-complete
● can generate a statement, a function, or even the whole driver

(on demand)

● never alters user code

● completes synthesised+manual code to a correct
implementation when possible

● The tool enforces correctness

40

Demo (continued)

41

Guided Synthesis
Scenario 1: Fully Automatic Synthesis

send(){
 ...
}

receive(){
 ...
}

driver template

send(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,snd);

}

receive(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,rcv);

}

synthesised driver

42

Guided Synthesis
Scenario 2: Hybrid Approach

send(){
 ...
}

receive(){
 ...
}

empty driver template

send(){
 write(ctl,flags);

 ...
}

receive(){
 ...
}

partially
synthesised driver

43

Guided Synthesis
Scenario 2: Hybrid Approach

send(){
 write(ctl,0);

 ...
}

receive(){
 ...
}

modified driver template

send(){
 write(ctl,flags);

 ...
}

receive(){
 ...
}

partially
synthesised driver

44

Guided Synthesis
Scenario 2: Hybrid Approach

send(){
 write(ctl,0);

 ...
}

receive(){
 ...
}

modified driver template synthesised driver

send(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,snd);

}

receive(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,rcv);

}

45

Guided Synthesis
Scenario 3: Verification

manually developed
driver

send(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,snd);

}

receive(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,rcv);

}

√

46

Obtaining Specs for Driver Synthesis

driver.c

OS interface
spec

device spec

47

Obtaining Specs for Driver Synthesis

driver.c

OS interface
spec

device spec

The synthesis paradox:
developing the spec is harder

than writing the driver “by hand”.

48

Obtaining Specs for Driver Synthesis

driver.c

OS interface
spec

device spec

OS specs are generic, i.e.,
made once for a class of devices

49

Obtaining Specs for Driver Synthesis

driver.c

OS interface
spec

device spec

device specs obtained
from hardware developers

50

Synthesised Drivers

Device Synthesis time
(s)

locs

Real-time clock 74 56

IDE 71 94

STM32F103RB UART 309 74

exynos 5 UART 177 35

STM32F103RB I2C 39 119

exynos 5 I2C 40 77

webcam 190 113

SPI 15 27

51

Synthesised Drivers

Device Synthesis time
(s)

locs

Real-time clock 74 56

IDE 71 94

STM32F103RB UART 309 74

exynos 5 UART 177 35

STM32F103RB I2C 39 119

exynos 5 I2C 40 77

webcam 190 113

SPI 15 27

52

Scope and Limitations

● Focus on synthesising device control logic
● Resource allocation, binding to OS interfaces, etc., must be

written manually or synthesised using different techniques

● Sequential synthesis
● Synchronisation synthesis as a separate step (jointly with

CU Boulder and IST Austria)

● No DMA support
● WiP

53

Summary

https://github.com/termite2

http://termite2.org

● Termite automates tedious driver development

● The user has full control over the source code, but
Termite enforces correctness

54

Summary

https://github.com/termite2

http://termite2.org

● Termite automates tedious driver development

● The user has full control over the source code, but
Termite enforces correctness

● Driver synthesis is less impossible than previously
believed

