
All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-

Consistent Applications

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan,

Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

All File Systems Are Not Created Equal:
On the Complexity of Crafting
Crash-Consistent Applications

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan,

Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Crash Consistency

Maintaining data invariants across a system crash
‐ Example: Database transactions should be atomic

Crash Consistency

Maintaining data invariants across a system crash
‐ Example: Database transactions should be atomic

Important in systems
‐ File Systems
‐ Relational Databases
‐ Key-Value Stores

Crash Consistency

Maintaining data invariants across a system crash
‐ Example: Database transactions should be atomic

Important in systems
‐ File Systems
‐ Relational Databases
‐ Key-Value Stores

Hard to get right: ARIES invented only in 1992
‐ Proving ARIES took 5 more years (1997)

Lots of work in file system crash consistency
‐ Journaling, copy-on-write, soft updates ...

File-System Crash Consistency

Lots of work in file system crash consistency
‐ Journaling, copy-on-write, soft updates ...

FS consistency focuses on internal metadata
‐ Do directories only contain valid directory entries?

File-System Crash Consistency

Lots of work in file system crash consistency
‐ Journaling, copy-on-write, soft updates ...

FS consistency focuses on internal metadata
‐ Do directories only contain valid directory entries?

What about user-level data?

File-System Crash Consistency

What guarantees do file systems give applications?
‐ That can be used for consistency of user-level data

This work studies ...

What guarantees do file systems give applications?
‐ That can be used for consistency of user-level data

Do applications maintain consistency correctly?
‐ Important applications require user-level consistency
‐ Databases, key-value stores, distributed systems ...

This work studies ...

File system guarantees vary widely
‐ Studied 16 configs of ext2,ext3,ext4,btrfs,xfs,reiserfs
‐ Guarantees vary among configs of same file system
‐ Guarantees often side-effects of FS implementation
‐ POSIX standards of guarantees, if any, are debated

We find ...

File system guarantees vary widely
‐ Studied 16 configs of ext2,ext3,ext4,btrfs,xfs,reiserfs
‐ Guarantees vary among configs of same file system
‐ Guarantees often side-effects of FS implementation
‐ POSIX standards of guarantees, if any, are debated

Applications depend on guarantees in subtle ways

‐ Studied 11 applications: Databases, Distributed systems,
Virtualization software, Key-value stores, VCS

‐ 60 vulnerabilities under a weak file system model
‐ More than 30 vulnerabilities under ext3, ext4, btrfs

We find ...

 Introduction

 An Example

 BOB: Examining File System Behavior

 ALICE: Examining Applications

 Conclusion

Outline

 Introduction

 An Example

 BOB: Examining File System Behavior

 ALICE: Examining Applications

 Conclusion

Outline

A file initially contains the string “a foo”
‐ Assume each character in “a foo” is a block of data

Task: Atomically change the contents to “a bar”
‐ On a power loss, we must retrieve either “a foo” or “a bar”

Toy Example: Overview

Toy Example: Simple Overwrite

Initial state

/x/f1 “a foo”

Final state

/x/f1 “a bar”

Modification

pwrite(/x/f1, 2, “bar”)

 <offset>

Intermediate states possible on crash

Toy Example: Simple Overwrite

Initial state

/x/f1 “a foo”

Modification

pwrite(/x/f1, 2, “bar”)

Final state

/x/f1 “a bar”

Intermediate state 1

/x/f1 “a boo”

Intermediate state 2

/x/f1 “a far”

Intermediate
states 3, 4, 5

What if crash atomicity is needed?

Use application-level logging (a.k.a. undo logging/rollback journaling)

a. Make a copy of old data in “log” file
b. Modify actual file
c. Delete log file
d. On a crash, data can be recovered from the log

Toy Example: Maintaining Consistency

What if crash atomicity is needed?

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, foo”);

 <offset, size, data>
 pwrite(/x/f1, 2, “bar”);

 unlink(/x/log1);

Write to log

Actual modification

Delete log

Toy Example: Protocol #1

Works in ext3(data-journal)!

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, foo”);

 pwrite(/x/f1, 2, “bar”);

 unlink(/x/log1);

Toy Example: Protocol #1

Some possible
intermediate states

/x/f1 “a foo”
/x/log1 “”

/x/f1 “a foo”
/x/log1 “2, 3, f”

/x/f1 “a boo”
/x/log1 “2, 3, foo”

1.

2.

3.

Works in ext3(data-journal)!

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, foo”);

 pwrite(/x/f1, 2, “bar”);

 unlink(/x/log1);

Some possible
intermediate states

/x/f1 “a foo”
/x/log1 “”

/x/f1 “a foo”
/x/log1 “2, 3, f”

/x/f1 “a boo”
/x/log1 “2, 3, foo”

1.

2.

3.

Toy Example: Protocol #1

Simply delete log
file during recovery

Works in ext3(data-journal)!

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, foo”);

 pwrite(/x/f1, 2, “bar”);

 unlink(/x/log1);

Some possible
intermediate states

/x/f1 “a foo”
/x/log1 “”

/x/f1 “a foo”
/x/log1 “2, 3, f”

/x/f1 “a boo”
/x/log1 “2, 3, foo”

1.

2.

3.

Toy Example: Protocol #1

Recover from log
file during recovery

Works in ext3(data-journal)!

Doesn’t work in ext3(data-ordered)

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, foo”);

 pwrite(/x/f1, 2, “bar”);

 unlink(/x/log1);

Toy Example: Protocol #1

Works in ext3(data-journal)!

Doesn’t work in ext3(data-ordered)

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, foo”);

 pwrite(/x/f1, 2, “bar”);

 unlink(/x/log1);

ext3(ordered) can re-order these
two requests, sending pwrite(f1)
to disk first, before write(log1)

Toy Example: Protocol #1

Works in ext3(data-journal)!

Doesn’t work in ext3(data-ordered)

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, foo”);

 pwrite(/x/f1, 2, “bar”);

 unlink(/x/log1);

A possible
intermediate state

/x/f1 “a boo”
/x/log1 “”

Recovery not
possible!

Toy Example: Protocol #1

Works in ext3(data-journal), (data-ordered)!

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, foo”);
 fsync(/x/log1);

 pwrite(/x/f1, 2, “bar”);
 fsync(/x/f1);
 unlink(/x/log1);

Toy Example: Protocol #2

Works in ext3(data-journal), (data-ordered)!

Doesn’t work in ext3(writeback)

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, foo”);
 fsync(/x/log1);

 pwrite(/x/f1, 2, “bar”);
 fsync(/x/f1);
 unlink(/x/log1);

A possible
intermediate states

/x/f1 “a foo”
/x/log1 “2, 3, #!@”

File size alone increases for
log1, and garbage occurs.
Recovery cannot differentiate
between garbage and data!

Crash
here

Toy Example: Protocol #2

Works in ext3(data-journal), (data-ordered), (writeback)

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, checksum, foo”);
 fsync(/x/log1);

 pwrite(/x/f1, 2, “bar”);
 fsync(/x/f1);
 unlink(/x/log1);

Toy Example: Protocol #3

Works in ext3(data-journal), (data-ordered), (writeback)

Not enough, according to Linux manpages

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, checksum, foo”);
 fsync(/x/log1);

 pwrite(/x/f1, 2, “bar”);
 fsync(/x/f1);
 unlink(/x/log1);

A possible
intermediate states

/x/f1 “a boo”

The log file’s directory entry
might never be created

Toy Example: Protocol #3

Works in all file systems

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, checksum, foo”);
 fsync(/x/log1);
 fsync(/x);
 pwrite(/x/f1, 2, “bar”);
 fsync(/x/f1);
 unlink(/x/log1);

Toy Example: Protocol #4

Works in all file systems

(Additional fsync() required for durability in all FS)

Update Protocol
 creat(/x/log1);
 write(/x/log1, ”2, 3, checksum, foo”);
 fsync(/x/log1);
 fsync(/x);
 pwrite(/x/f1, 2, “bar”);
 fsync(/x/f1);
 unlink(/x/log1);
 fsync(/x);

Toy Example: Protocol #5

File systems vary in crash-related behavior
‐ ext3(ordered) re-orders, while ext3(journaled) does not

Applications usually depend on some behavior
‐ Depend on ordering: Some fsync() calls can be omitted

Example: Summary

 Introduction

 An Example

 BOB: Examining File System Behavior

 ALICE: Examining Applications

 Conclusion

Outline

Two classes of properties: atomicity and ordering
‐ Atomicity example: Is a write() call atomic in the FS?
‐ Ordering example: Are write() calls sent to disk in-order?

Studied ext2, ext3, ext4, btrfs, xfs, reiserfs
‐ We studied 16 configurations of the six file systems

FS Behavior: Persistence Properties

1. Run user-level workloads stressing the property
‐ Example: write(8KB) for testing atomicity of write() calls

Methodology: The Block-Order Breaker (BOB)

1. Run user-level workloads stressing the property
‐ Example: write(8KB) for testing atomicity of write() calls

2. Record block-level trace of the workload

Methodology: The Block-Order Breaker (BOB)

1. Run user-level workloads stressing the property
‐ Example: write(8KB) for testing atomicity of write() calls

2. Record block-level trace of the workload

3. Reconstruct disk-states possible on a power-loss
‐ All states possible if disk-cache does not re-order
‐ A few states where disk-cache re-orders

Methodology: The Block-Order Breaker (BOB)

1. Run user-level workloads stressing the property
‐ Example: write(8KB) for testing atomicity of write() calls

2. Record block-level trace of the workload

3. Reconstruct disk-states possible on a power-loss
‐ All states possible if disk-cache does not re-order
‐ A few states where disk-cache re-orders

4. Run FS recovery, verify property on each disk-state
‐ Example: Is all 8KB written atomically?

Methodology: The Block-Order Breaker (BOB)

File System Study: Results

File system
configuration

Atomicity Ordering

One sector
overwrite

Append
content

Many sector
overwrite

Directory
operation

Overwrite
→ Any op

Append →
Any op

Dir-op
→ Any op

Append →
Rename

ext2
async ✘ ✘ ✘ ✘ ✘ ✘ ✘

sync ✘ ✘ ✘

ext3

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘

data-journal ✘

ext4

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘ ✘

no-delalloc ✘ ✘

data-journal ✘

btrfs ✘ ✘ ✘

xfs
default ✘ ✘ ✘

wsync ✘ ✘

File System Study: Results

File system
configuration

Atomicity Ordering

One sector
overwrite

Append
content

Many sector
overwrite

Directory
operation

Overwrite
→ Any op

Append →
Any op

Dir-op
→ Any op

Append →
Rename

ext2
async ✘ ✘ ✘ ✘ ✘ ✘ ✘

sync ✘ ✘ ✘

ext3

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘

data-journal ✘

ext4

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘ ✘

no-delalloc ✘ ✘

data-journal ✘

btrfs ✘ ✘ ✘

xfs
default ✘ ✘ ✘

wsync ✘ ✘

File System Different Configurations of File System

File System Study: Results

File system
configuration

Atomicity Ordering

One sector
overwrite

Append
content

Many sector
overwrite

Directory
operation

Overwrite
→ Any op

Append →
Any op

Dir-op
→ Any op

Append →
Rename

ext2
async ✘ ✘ ✘ ✘ ✘ ✘ ✘

sync ✘ ✘ ✘

ext3

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘

data-journal ✘

ext4

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘ ✘

no-delalloc ✘ ✘

data-journal ✘

btrfs ✘ ✘ ✘

xfs
default ✘ ✘ ✘

wsync ✘ ✘

Persistence Properties considered

File System Study: Results

File system
configuration

Atomicity Ordering

One sector
overwrite

Append
content

Many sector
overwrite

Directory
operation

Overwrite
→ Any op

Append →
Any op

Dir-op
→ Any op

Append →
Rename

ext2
async ✘ ✘ ✘ ✘ ✘ ✘ ✘

sync ✘ ✘ ✘

ext3

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘

data-journal ✘

ext4

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘ ✘

no-delalloc ✘ ✘

data-journal ✘

btrfs ✘ ✘ ✘

xfs
default ✘ ✘ ✘

wsync ✘ ✘

Is a directory operation, like rename(),
atomic on a system crash?

File System Study: Results

File system
configuration

Atomicity Ordering

One sector
overwrite

Append
content

Many sector
overwrite

Directory
operation

Overwrite
→ Any op

Append →
Any op

Dir-op
→ Any op

Append →
Rename

ext2
async ✘ ✘ ✘ ✘ ✘ ✘ ✘

sync ✘ ✘ ✘

ext3

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘

data-journal ✘

ext4

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘ ✘

no-delalloc ✘ ✘

data-journal ✘

btrfs ✘ ✘ ✘

xfs
default ✘ ✘ ✘

wsync ✘ ✘

Property certainly
not obeyed

We did not see a violation

File System Study: Results

File system
configuration

Atomicity Ordering

One sector
overwrite

Append
content

Many sector
overwrite

Directory
operation

Overwrite
→ Any op

Append →
Any op

Dir-op
→ Any op

Append →
Rename

ext2
async ✘ ✘ ✘ ✘ ✘ ✘ ✘

sync ✘ ✘ ✘

ext3

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘

data-journal ✘

ext4

writeback ✘ ✘ ✘ ✘ ✘

ordered ✘ ✘ ✘

no-delalloc ✘ ✘

data-journal ✘

btrfs ✘ ✘ ✘

xfs
default ✘ ✘ ✘

wsync ✘ ✘

Main result: File systems vary in their persistence properties

Applications should not rely on persistence properties

Testing applications on a specific FS is not enough
‐ ext3(data-journal): Re-ordering vulnerabilities are hidden

File System Study: Conclusion

 Introduction

 An Example

 BOB: Examining File System Behavior

 ALICE: Examining Applications

 Conclusion

Outline

ALICE: Goal

“Application-Level Intelligent Crash Explorer”

Goal: Tool to find crash vulnerabilities of an application
‐ Find vulnerabilities across all file systems
‐ Relate vulnerabilities to specific source lines
‐ Relate vulnerabilities to file system behavior

ALICE: Technique User-supplied
Application Workload

ALICE

User supplies ALICE with an
application workload

– Example: A database transaction

ALICE: Technique

System-call
Trace

ALICE runs workload and
records system-call trace

ALICE

User-supplied
Application Workload

ALICE: Technique

System-call
Trace

APM: Abstract
Persistence

Model

APM models all crash states
that can occur on an FS

– Default, weak APM allows many
possible states

– Custom APMs can be configured
by user for a specific file system

– Eg: ext3(ordered) APM allows
states with overwrites re-ordered;
ext3(data-journal) APM does not

ALICE

User-supplied
Application Workload

ALICE: Technique

System-call
Trace

Explorer

APM: Abstract
Persistence

Model

Explorer reconstructs some
states using the APM

ALICE

User-supplied
Application Workload

ALICE: Technique

System-call
Trace

Explorer

...

ALICE
APM: Abstract

Persistence
Model

Crash state #1
(Violates atomicity

of syscall-1)

Crash state #2
(Violates ordering
of syscall-1 and 2)

Explorer targets specific states
– Relating to atomicity and

re-ordering of each syscall

User-supplied
Application Workload

The application is run on
each reconstructed state

– User supplies application checker
– Example: Was ACID preserved?

ALICE: Technique

System-call
Trace

Explorer

...
User-supplied

Application
Checker

ALICE
APM: Abstract

Persistence
Model

Crash state #1
(Violates atomicity

of syscall-1)

Crash state #2
(Violates ordering
of syscall-1 and 2)

User-supplied
Application Workload

Checker shows which states
are recovered from correctly

ALICE: Technique

System-call
Trace

Explorer

...

ALICE
APM: Abstract

Persistence
Model

Crash state #1
(Violates atomicity

of syscall-1)

Crash state #2
(Violates ordering
of syscall-1 and 2)

Correct Incorrect

User-supplied
Application Workload

User-supplied
Application

Checker

From checker outputs, we
determine vulnerabilities

ALICE: Technique

System-call
Trace

Explorer

...

Crash vulnerability: Re-
ordering syscall-1 and 2

ALICE
APM: Abstract

Persistence
Model

Crash state #1
(Violates atomicity

of syscall-1)

Crash state #2
(Violates ordering
of syscall-1 and 2)

Correct Incorrect

User-supplied
Application Workload

User-supplied
Application

Checker

HDFS

ZooKeeper

VMWare Player

LMDB

GDBM
LevelDB

Postgres

HSQLDB

SQLite

Mercurial

Git

Vulnerability Study: Applications

Non-relational Databases

Relational Databases

Version Control Systems

Virtualization Software

Distributed Services

Example: Git

creat(index.lock)
mkdir(o/x)

creat(o/x/tmp_y)
append(o/x/tmp_y)

fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)

unlink(o/x/tmp_y)
append(index.lock)

rename(index.lock,index)
stdout(finished add)

Read the full paper to
correctly interpret results!

creat(index.lock)
mkdir(o/x)

creat(o/x/tmp_y)
append(o/x/tmp_y)

fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)

unlink(o/x/tmp_y)
append(index.lock)

rename(index.lock,index)
stdout(finished add)

Example: Git

Atomicity vulnerability

Which system calls need to be atomic?

Read the full paper to
correctly interpret results!

creat(index.lock)
mkdir(o/x)

creat(o/x/tmp_y)
append(o/x/tmp_y)

fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)

unlink(o/x/tmp_y)
append(index.lock)

rename(index.lock,index)
stdout(finished add)

Example: Git

Atomicity vulnerability

Ordering vulnerabilityWhich system-call re-orderings cause incorrectness?

Read the full paper to
correctly interpret results!

Vulnerability Study: Default (Weak) APM

Read the full paper to
correctly interpret results!

Vulnerability Study: Default (Weak) APM
60 Vulnerabilities

Many result in silent data loss, inaccessible applications

Read the full paper to
correctly interpret results!

Vulnerability Study: Btrfs APM

Read the full paper to
correctly interpret results!

Vulnerability Study: Btrfs APM
31 Vulnerabilities

Read the full paper to
correctly interpret results!

Garbage during file-appends
‐ Affects 3 applications
‐ But, partial appends with actual data: 0 vulnerabilities

FS safety heuristics seemingly don’t help much
‐ Only 2 found vulnerabilities by “Flush data before rename”
‐ Heuristics might help other types of applications

Non-synchronous directory operations
‐ Affects durability of 6 applications

What FS behavior affects applications?

In-depth: What FS behaviors affect applications

Vulnerabilities under other APMs

Interactions with application developers

How not to interpret our results

An efficient FS design with safety validated by ALICE

In the paper ...

FS vary in behavior affecting application consistency

‐ ext2, ext3, ext4, btrfs, xfs, reiserfs vary even among their
different configurations

‐ Subtle implementation details affect behavior

Application protocols are complex, vulnerable
‐ 60 vulnerabilities under weak APM
‐ More than half exposed under ext3, ext4, btrfs
‐ Depend (by design or unwittingly) on FS implementation

Summary

A parting note

Experienced App-Developer:
POSIX doesn’t let FSes do that

Can you point us to the exact
POSIX documentation?

Developer: I can’t find it, but I
remember someone saying so

A parting note

Experienced App-Developer:
POSIX doesn’t let FSes do that

Can you point us to the exact
POSIX documentation?

Developer: I can’t find it, but I
remember someone saying so

Experienced Academic:
Real file systems don’t do that

But <...> does just that

Academic: My students would
flunk class if they built a file

system that way ...

A parting note

Experienced App-Developer:
POSIX doesn’t let FSes do that

Can you point us to the exact
POSIX documentation?

Developer: I can’t find it, but I
remember someone saying so

Experienced Academic:
Real file systems don’t do that

But <...> does just that

Academic: My students would
flunk class if they built a file

system that way ...

Thank you!

Download tools: http://research.cs.wisc.edu/adsl/Software/alice

