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IncrTxn(k Key) { 
 INCR(k, 1) 

} 
 
LikePageTxn(page Key, user Key) { 
 INCR(page, 1) 
 liked_pages := GET(user) 
 PUT(user, liked_pages + page) 

} 
 
FriendTxn(u1 Key, u2 Key) { 
 PUT(friend:u1:u2, 1) 
 PUT(friend:u2:u1, 1) 

} 
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IncrTxn(k Key) { 
 INCR(k, 1) 

} 
 
LikePageTxn(page Key, user Key) { 
 INCR(page, 1) 
 liked_pages := GET(user) 
 PUT(user, liked_pages + page) 

} 
 
FriendTxn(u1 Key, u2 Key) { 
 PUT(friend:u1:u2, 1) 
 PUT(friend:u2:u1, 1) 

} 
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Applications experience write contention on 
popular data
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Problem
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Concurrency Control Enforces Serial 
Execution

core 0

core 1

core 2

INCR(x,1)

INCR(x,1)

INCR(x,1)
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time

Transactions on the same records 
execute one at a time



Throughput on a Contentious 
Transactional Workload
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Throughput on a Contentious 
Transactional Workload
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INCR on the Same Records Can 
Execute in Parallel

core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1)

INCR(x2,1)
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time

•  Transactions on the same record can proceed in 
parallel on per-core slices and be reconciled later

•  This is correct because INCR commutes

1 

1 

1 

per-core slices 
of record x


x is split across 

cores



Databases Must Support General 
Purpose Transactions

IncrTxn(k Key) { 
 INCR(k, 1) 

} 

PutMaxTxn(k1 Key, k2 Key) { 
 v1 := GET(k1) 
 v2 := GET(k2) 
 if v1 > v2: 
  PUT(k1, v2) 
 else: 
  PUT(k2, v1) 
 return v1,v2  

} 
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IncrPutTxn(k1 Key, k2 Key, v Value) { 
 INCR(k1, 1) 
 PUT(k2, v) 

} 

Must happen 
atomically

Must happen 
atomically

Returns a value



Challenge
Fast, general-purpose serializable transaction 
execution with per-core slices for contended 
records
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Phase Reconciliation
•  Database automatically 

detects contention to 
split a record among 
cores

•  Database cycles 
through phases: split, 
reconciliation, and 
joined
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reconciliation

Joined 
Phase

Split 
Phase

Doppel, an in-memory transactional database






Contributions
Phase reconciliation
– Splittable operations
– Efficient detection and response to contention 

on individual records
– Reordering of split transactions and reads to 

reduce conflict
– Fast reconciliation of split values
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Outline
1.  Phase reconciliation
2.  Operations
3.  Detecting contention
4.  Performance evaluation

14	  



Split Phase

core 0

core 1

core 2

INCR(x,1)

INCR(x,1) PUT(y,2)

INCR(x,1) PUT(z,1)
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core 3 INCR(x,1) PUT(y,2)

core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) PUT(y,2)

INCR(x2,1) PUT(z,1)

core 3 INCR(x3,1) PUT(y,2)

•  The split phase transforms operations on contended 
records (x) into operations on per-core slices (x0, x1, x2, x3)

split phase



•  Transactions can operate on split and non-split records
•  Rest of the records use OCC (y, z)
•  OCC ensures serializability for the non-split parts of the 

transaction
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core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) PUT(y,2)

INCR(x2,1) PUT(z,1)

core 3 INCR(x3,1) PUT(y,2)

split phase



•  Split records have assigned operations for a given split phase
•  Cannot correctly process a read of x in the current state
•  Stash transaction to execute after reconciliation
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core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) PUT(y,2)

INCR(x2,1) PUT(z,1)

core 3 INCR(x3,1) PUT(y,2)

split phase

INCR(x1,1)

INCR(x2,1)

INCR(x1,1)

GET(x)
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core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) PUT(y,2)

INCR(x2,1) PUT(z,1)

core 3 INCR(x3,1) PUT(y,2)

split phase

•  All threads hear they should reconcile their per-core state
•  Stop processing per-core writes

GET(x)

INCR(x1,1)

INCR(x2,1)

INCR(x1,1)



•  Reconcile state to global store
•  Wait until all threads have finished reconciliation
•  Resume stashed read transactions in joined phase
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core 0

core 1

core 2

core 3

reconciliation phase joined phase

x = x + x0

x = x + x1

x = x + x2

x = x + x3

GET(x)
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core 0

core 1

core 2

core 3

x = x + x0

x = x + x1

x = x + x2

x = x + x3

reconciliation phase

GET(x)

joined phase

•  Reconcile state to global store
•  Wait until all threads have finished reconciliation
•  Resume stashed read transactions in joined phase
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core 0

core 1

core 2

core 3

GET(x)

•  Process new transactions in joined phase using OCC
•  No split data

joined phase

INCR(x)

INCR(x, 1)

GET(x)GET(x)



Batching Amortizes the Cost of 
Reconciliation
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core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) INCR(y,2)

INCR(x2,1) INCR(z,1)

core 3 INCR(x3,1) INCR(y,2)

GET(x)

•  Wait to accumulate stashed transactions, batch for joined phase
•  Amortize the cost of reconciliation over many transactions
•  Reads would have conflicted; now they do not

INCR(x1,1)

INCR(x2,1) INCR(z,1)GET(x)

GET(x)

GET(x)

GET(x)

GET(x)

split phase
joined 
phase



Phase Reconciliation Summary
•  Many contentious writes happen in parallel 

in split phases
•  Reads and any other incompatible 

operations happen correctly in joined 
phases
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Outline
1.  Phase reconciliation
2.  Operations
3.  Detecting contention
4.  Performance evaluation
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Ordered PUT and insert 
to an ordered list

Operation Model
Developers write transactions as stored procedures which 
are composed of operations on keys and values:
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value GET(k) 
void PUT(k,v) 
 
void INCR(k,n) 
void MAX(k,n) 
void MULT(k,n) 
 
void OPUT(k,v,o) 
void TOPK_INSERT(k,v,o) 


Traditional key/value 
operations

Operations on numeric 
values which modify the 

existing value

Not splittable

Splittable



27 

55 

MAX Can Be Efficiently Reconciled
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core 0

core 1

core 2

MAX(x0,55) 

MAX(x1,10) 

MAX(x2,21) 21 

•  Each core keeps one piece of state xi
•  O(#cores) time to reconcile x
•  Result is compatible with any order

MAX(x0,2) 

MAX(x1,27) 

x = 55 



What Operations Does Doppel Split?

Properties of operations that Doppel can split:
– Commutative
– Can be efficiently reconciled
– Single key
– Have no return value


However:
– Only one operation per record per split phase
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Outline
1.  Phase reconciliation
2.  Operations
3.  Detecting contention
4.  Performance evaluation
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Which Records Does Doppel Split?

•  Database starts out with no split data
•  Count conflicts on records
– Make key split if #conflicts > conflictThreshold

•  Count stashes on records in the split phase
– Move key back to non-split if #stashes too high
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Outline
1.  Phase reconciliation
2.  Operations
3.  Detecting contention
4.  Performance evaluation
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Experimental Setup and 
Implementation

•  All experiments run on an 80 core Intel server 
running 64 bit Linux 3.12 with 256GB of RAM

•  Doppel implemented as a multithreaded Go 
server; one worker thread per core

•  Transactions are procedures written in Go
•  All data fits in memory; don’t measure RPC
•  All graphs measure throughput in transactions/

sec
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Performance Evaluation
•  How much does Doppel improve 

throughput on contentious write-only 
workloads?

•  What kinds of read/write workloads benefit?
•  Does Doppel improve throughput for a 

realistic application: RUBiS?
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Doppel Executes Conflicting 
Workloads in Parallel
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Doppel Outperforms OCC Even With 
Low Contention
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34	  20 cores, 1M 16 byte keys, transaction: INCR(x,1) on different keys

5% of writes to 
contended key



Contentious Workloads Scale Well

1M 16 byte keys, transaction: INCR(x,1) all writing same key 35	  
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LIKE Benchmark
•  Users liking pages on a social network
•  2 tables: users, pages
•  Two transactions:
–  Increment page’s like count, insert user like of page
–  Read a page’s like count, read user’s last like

•  1M users, 1M pages, Zipfian distribution of page 
popularity

Doppel splits the page-like-counts for popular pages
But those counts are also read more often
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Benefits Even When There Are 
Reads and Writes to the Same 

Popular Keys
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Doppel Outperforms OCC For A 
Wide Range of Read/Write Mixes

20 cores, transactions: LIKE read, LIKE write 38	  
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any data and performs 

the same as OCC!More stashed read transactions



RUBiS
•  Auction application modeled after eBay
–  Users bid on auctions, comment, list new items, search

•  1M users and 33K auctions
•  7 tables, 17 transactions
•  85% read only transactions (RUBiS bidding mix)

•  Two workloads:
–  Uniform distribution of bids
–  Skewed distribution of bids; a few auctions are very 

popular
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StoreBid Transaction
StoreBidTxn(bidder, amount, item) { 

 INCR(NumBidsKey(item),1) 

 MAX(MaxBidKey(item), amount) 

  OPUT(MaxBidderKey(item), bidder, amount) 

 PUT(NewBidKey(), Bid{bidder, amount, item}) 

} 

All commutative operations on 
potentially conflicting auction metadata


Inserting new bids is not likely to conflict
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Related Work
•  Commutativity in distributed systems and concurrency 

control
–  [Weihl ’88]
–  CRDTs [Shapiro ’11]
–  RedBlue consistency [Li ’12]
–  Walter [Lloyd ’12]

•  Optimistic concurrency control
–  [Kung ’81]
–  Silo [Tu ’13]

•  Split counters in multicore OSes
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Conclusion
Doppel:
•  Achieves parallel performance when many transactions 

conflict by combining per-core data and concurrency 
control

•  Performs comparably to OCC on uniform or read-heavy 
workloads while improving performance significantly on 
skewed workloads.
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http://pdos.csail.mit.edu/doppel


