
Phase Reconciliation for
Contended In-Memory

Transactions

Neha Narula, Cody Cutler, Eddie Kohler, Robert Morris

MIT CSAIL and Harvard

1	

IncrTxn(k Key) {
 INCR(k, 1)

}

LikePageTxn(page Key, user Key) {
 INCR(page, 1)
 liked_pages := GET(user)
 PUT(user, liked_pages + page)

}

FriendTxn(u1 Key, u2 Key) {
 PUT(friend:u1:u2, 1)
 PUT(friend:u2:u1, 1)

}

2	

IncrTxn(k Key) {
 INCR(k, 1)

}

LikePageTxn(page Key, user Key) {
 INCR(page, 1)
 liked_pages := GET(user)
 PUT(user, liked_pages + page)

}

FriendTxn(u1 Key, u2 Key) {
 PUT(friend:u1:u2, 1)
 PUT(friend:u2:u1, 1)

}

3	

Applications experience write contention on
popular data

4	

Problem

5	

Concurrency Control Enforces Serial
Execution

core 0

core 1

core 2

INCR(x,1)

INCR(x,1)

INCR(x,1)

6	

time

Transactions on the same records
execute one at a time

Throughput on a Contentious
Transactional Workload

7	

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t
(t

xn
s/

se
c)

cores

OCC

Throughput on a Contentious
Transactional Workload

8	

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t
(t

xn
s/

se
c)

cores

Doppel
OCC

INCR on the Same Records Can
Execute in Parallel

core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1)

INCR(x2,1)

9	

time

•  Transactions on the same record can proceed in
parallel on per-core slices and be reconciled later

•  This is correct because INCR commutes

1

1

1

per-core slices
of record x

x is split across

cores

Databases Must Support General
Purpose Transactions

IncrTxn(k Key) {
 INCR(k, 1)

}

PutMaxTxn(k1 Key, k2 Key) {
 v1 := GET(k1)
 v2 := GET(k2)
 if v1 > v2:
 PUT(k1, v2)
 else:
 PUT(k2, v1)
 return v1,v2

}
10	

IncrPutTxn(k1 Key, k2 Key, v Value) {
 INCR(k1, 1)
 PUT(k2, v)

}

Must happen
atomically

Must happen
atomically

Returns a value

Challenge

Fast, general-purpose serializable transaction
execution with per-core slices for contended
records

11	

Phase Reconciliation

•  Database automatically

detects contention to
split a record among
cores

•  Database cycles
through phases: split,
reconciliation, and
joined

12	

reconciliation

Joined
Phase

Split
Phase

Doppel, an in-memory transactional database

Contributions

Phase reconciliation

– Splittable operations

– Efficient detection and response to contention

on individual records

– Reordering of split transactions and reads to

reduce conflict

– Fast reconciliation of split values

13	

Outline

1.  Phase reconciliation

2.  Operations

3.  Detecting contention

4.  Performance evaluation

14	

Split Phase

core 0

core 1

core 2

INCR(x,1)

INCR(x,1) PUT(y,2)

INCR(x,1) PUT(z,1)

15	

core 3
 INCR(x,1) PUT(y,2)

core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) PUT(y,2)

INCR(x2,1) PUT(z,1)

core 3
 INCR(x3,1) PUT(y,2)

•  The split phase transforms operations on contended
records (x) into operations on per-core slices (x0, x1, x2, x3)

split phase

•  Transactions can operate on split and non-split records

•  Rest of the records use OCC (y, z)

•  OCC ensures serializability for the non-split parts of the

transaction

16	

core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) PUT(y,2)

INCR(x2,1) PUT(z,1)

core 3
 INCR(x3,1) PUT(y,2)

split phase

•  Split records have assigned operations for a given split phase

•  Cannot correctly process a read of x in the current state

•  Stash transaction to execute after reconciliation

17	

core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) PUT(y,2)

INCR(x2,1) PUT(z,1)

core 3
 INCR(x3,1) PUT(y,2)

split phase

INCR(x1,1)

INCR(x2,1)

INCR(x1,1)

GET(x)

18	

core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) PUT(y,2)

INCR(x2,1) PUT(z,1)

core 3
 INCR(x3,1) PUT(y,2)

split phase

•  All threads hear they should reconcile their per-core state

•  Stop processing per-core writes

GET(x)

INCR(x1,1)

INCR(x2,1)

INCR(x1,1)

•  Reconcile state to global store

•  Wait until all threads have finished reconciliation

•  Resume stashed read transactions in joined phase

19	

core 0

core 1

core 2

core 3

reconciliation phase
 joined phase

x = x + x0

x = x + x1

x = x + x2

x = x + x3

GET(x)

20	

core 0

core 1

core 2

core 3

x = x + x0

x = x + x1

x = x + x2

x = x + x3

reconciliation phase

GET(x)

joined phase

•  Reconcile state to global store

•  Wait until all threads have finished reconciliation

•  Resume stashed read transactions in joined phase

21	

core 0

core 1

core 2

core 3

GET(x)

•  Process new transactions in joined phase using OCC

•  No split data

joined phase

INCR(x)

INCR(x, 1)

GET(x)
GET(x)

Batching Amortizes the Cost of
Reconciliation

22	

core 0

core 1

core 2

INCR(x0,1)

INCR(x1,1) INCR(y,2)

INCR(x2,1) INCR(z,1)

core 3
 INCR(x3,1) INCR(y,2)

GET(x)

•  Wait to accumulate stashed transactions, batch for joined phase

•  Amortize the cost of reconciliation over many transactions

•  Reads would have conflicted; now they do not

INCR(x1,1)

INCR(x2,1) INCR(z,1)
GET(x)

GET(x)

GET(x)

GET(x)

GET(x)

split phase

joined
phase

Phase Reconciliation Summary

•  Many contentious writes happen in parallel

in split phases

•  Reads and any other incompatible

operations happen correctly in joined
phases

23	

Outline

1.  Phase reconciliation

2.  Operations

3.  Detecting contention

4.  Performance evaluation

24	

Ordered PUT and insert
to an ordered list

Operation Model

Developers write transactions as stored procedures which
are composed of operations on keys and values:

25	

value GET(k)
void PUT(k,v)

void INCR(k,n)
void MAX(k,n)
void MULT(k,n)

void OPUT(k,v,o)
void TOPK_INSERT(k,v,o)

Traditional key/value
operations

Operations on numeric
values which modify the

existing value

Not splittable

Splittable

27

55

MAX Can Be Efficiently Reconciled

26	

core 0

core 1

core 2

MAX(x0,55)

MAX(x1,10)

MAX(x2,21) 21

•  Each core keeps one piece of state xi

•  O(#cores) time to reconcile x

•  Result is compatible with any order

MAX(x0,2)

MAX(x1,27)

x = 55

What Operations Does Doppel Split?

Properties of operations that Doppel can split:

– Commutative

– Can be efficiently reconciled

– Single key

– Have no return value

However:

– Only one operation per record per split phase

27	

Outline

1.  Phase reconciliation

2.  Operations

3.  Detecting contention

4.  Performance evaluation

28	

Which Records Does Doppel Split?

•  Database starts out with no split data

•  Count conflicts on records

– Make key split if #conflicts > conflictThreshold

•  Count stashes on records in the split phase

– Move key back to non-split if #stashes too high

29	

Outline

1.  Phase reconciliation

2.  Operations

3.  Detecting contention

4.  Performance evaluation

30	

Experimental Setup and
Implementation

•  All experiments run on an 80 core Intel server
running 64 bit Linux 3.12 with 256GB of RAM

•  Doppel implemented as a multithreaded Go
server; one worker thread per core

•  Transactions are procedures written in Go

•  All data fits in memory; don’t measure RPC

•  All graphs measure throughput in transactions/

sec

31	

Performance Evaluation

•  How much does Doppel improve

throughput on contentious write-only
workloads?

•  What kinds of read/write workloads benefit?

•  Does Doppel improve throughput for a

realistic application: RUBiS?

32	

Doppel Executes Conflicting
Workloads in Parallel

Th
ro

ug
hp

ut
 (m

illi
on

s
tx

ns
/s

ec
)

20 cores, 1M 16 byte keys, transaction: INCR(x,1) all on same key

0

5

10

15

20

25

30

35

Doppel
 OCC
 2PL

33	

Doppel Outperforms OCC Even With
Low Contention

0M

5M

10M

15M

20M

25M

30M

35M

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(t

xn
s/

se
c)

% of transactions with hot key

Doppel
OCC

34	
 20 cores, 1M 16 byte keys, transaction: INCR(x,1) on different keys

5% of writes to
contended key

Contentious Workloads Scale Well

1M 16 byte keys, transaction: INCR(x,1) all writing same key
 35	

0M

10M

20M

30M

40M

50M

60M

70M

80M

90M

100M

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t
(t

xn
s/

se
c)

number of cores

Doppel
OCC

Communication of
phase changing

LIKE Benchmark

•  Users liking pages on a social network

•  2 tables: users, pages

•  Two transactions:

–  Increment page’s like count, insert user like of page

–  Read a page’s like count, read user’s last like

•  1M users, 1M pages, Zipfian distribution of page
popularity

Doppel splits the page-like-counts for popular pages

But those counts are also read more often

36	

Benefits Even When There Are
Reads and Writes to the Same

Popular Keys

37	

0

1

2

3

4

5

6

7

8

9

Doppel
 OCC

Th
ro

ug
hp

ut
 (m

illi
on

s
tx

ns
/s

ec
)

20 cores, transactions: 50% LIKE read, 50% LIKE write

Doppel Outperforms OCC For A
Wide Range of Read/Write Mixes

20 cores, transactions: LIKE read, LIKE write
 38	

0M

2M

4M

6M

8M

10M

12M

14M

16M

18M

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(t

xn
s/

se
c)

% of transactions that read

Doppel
OCC

Doppel does not split
any data and performs

the same as OCC!More stashed read transactions

RUBiS

•  Auction application modeled after eBay

–  Users bid on auctions, comment, list new items, search

•  1M users and 33K auctions

•  7 tables, 17 transactions

•  85% read only transactions (RUBiS bidding mix)

•  Two workloads:

–  Uniform distribution of bids

–  Skewed distribution of bids; a few auctions are very

popular

39	

StoreBid Transaction

StoreBidTxn(bidder, amount, item) {

 INCR(NumBidsKey(item),1)

 MAX(MaxBidKey(item), amount)

 OPUT(MaxBidderKey(item), bidder, amount)

 PUT(NewBidKey(), Bid{bidder, amount, item})

}

All commutative operations on
potentially conflicting auction metadata

Inserting new bids is not likely to conflict

40	

0

2

4

6

8

10

12

Uniform
 Skewed

Doppel

OCC

Doppel Improves Throughput on an
Application Benchmark

41	

Th
ro

ug
hp

ut
 (m

illi
on

s
tx

ns
/s

ec
)

80 cores, 1M users 33K auctions, RUBiS bidding mix

8% StoreBid
Transactions

3.2x

throughput

improvement

Related Work

•  Commutativity in distributed systems and concurrency

control

–  [Weihl ’88]

–  CRDTs [Shapiro ’11]

–  RedBlue consistency [Li ’12]

–  Walter [Lloyd ’12]

•  Optimistic concurrency control

–  [Kung ’81]

–  Silo [Tu ’13]

•  Split counters in multicore OSes

42	

Conclusion

Doppel:

•  Achieves parallel performance when many transactions

conflict by combining per-core data and concurrency
control

•  Performs comparably to OCC on uniform or read-heavy
workloads while improving performance significantly on
skewed workloads.

43	

http://pdos.csail.mit.edu/doppel

