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IncrTxn(k Key) { 
 INCR(k, 1) 

} 
 
LikePageTxn(page Key, user Key) { 
 INCR(page, 1) 
 liked_pages := GET(user) 
 PUT(user, liked_pages + page) 

} 
 
FriendTxn(u1 Key, u2 Key) { 
 PUT(friend:u1:u2, 1) 
 PUT(friend:u2:u1, 1) 

} 
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 INCR(k, 1) 
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LikePageTxn(page Key, user Key) { 
 INCR(page, 1) 
 liked_pages := GET(user) 
 PUT(user, liked_pages + page) 

} 
 
FriendTxn(u1 Key, u2 Key) { 
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Applications experience write contention on 
popular data
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Problem
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Concurrency Control Enforces Serial 
Execution


core 0


core 1


core 2


INCR(x,1)


INCR(x,1)


INCR(x,1)
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time


Transactions on the same records 
execute one at a time




Throughput on a Contentious 
Transactional Workload
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Throughput on a Contentious 
Transactional Workload
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INCR on the Same Records Can 
Execute in Parallel


core 0


core 1


core 2


INCR(x0,1)


INCR(x1,1)


INCR(x2,1)
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time


•  Transactions on the same record can proceed in 
parallel on per-core slices and be reconciled later


•  This is correct because INCR commutes


1 

1 

1 

per-core slices 
of record x




x is split across 

cores




Databases Must Support General 
Purpose Transactions


IncrTxn(k Key) { 
 INCR(k, 1) 

} 

PutMaxTxn(k1 Key, k2 Key) { 
 v1 := GET(k1) 
 v2 := GET(k2) 
 if v1 > v2: 
  PUT(k1, v2) 
 else: 
  PUT(k2, v1) 
 return v1,v2  

} 
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IncrPutTxn(k1 Key, k2 Key, v Value) { 
 INCR(k1, 1) 
 PUT(k2, v) 

} 

Must happen 
atomically


Must happen 
atomically


Returns a value




Challenge

Fast, general-purpose serializable transaction 
execution with per-core slices for contended 
records
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Phase Reconciliation


•  Database automatically 

detects contention to 
split a record among 
cores


•  Database cycles 
through phases: split, 
reconciliation, and 
joined
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reconciliation


Joined 
Phase


Split 
Phase


Doppel, an in-memory transactional database









Contributions

Phase reconciliation

– Splittable operations

– Efficient detection and response to contention 

on individual records

– Reordering of split transactions and reads to 

reduce conflict

– Fast reconciliation of split values
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Outline

1.  Phase reconciliation

2.  Operations

3.  Detecting contention

4.  Performance evaluation
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Split Phase


core 0


core 1


core 2


INCR(x,1)


INCR(x,1) PUT(y,2)


INCR(x,1) PUT(z,1)
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core 3
 INCR(x,1) PUT(y,2)


core 0


core 1


core 2


INCR(x0,1)


INCR(x1,1) PUT(y,2)


INCR(x2,1) PUT(z,1)


core 3
 INCR(x3,1) PUT(y,2)


•  The split phase transforms operations on contended 
records (x) into operations on per-core slices (x0, x1, x2, x3)


split phase




•  Transactions can operate on split and non-split records

•  Rest of the records use OCC (y, z)

•  OCC ensures serializability for the non-split parts of the 

transaction
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core 0


core 1


core 2


INCR(x0,1)


INCR(x1,1) PUT(y,2)


INCR(x2,1) PUT(z,1)


core 3
 INCR(x3,1) PUT(y,2)


split phase




•  Split records have assigned operations for a given split phase

•  Cannot correctly process a read of x in the current state

•  Stash transaction to execute after reconciliation
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core 0


core 1


core 2


INCR(x0,1)


INCR(x1,1) PUT(y,2)


INCR(x2,1) PUT(z,1)


core 3
 INCR(x3,1) PUT(y,2)


split phase


INCR(x1,1)


INCR(x2,1)


INCR(x1,1)


GET(x)
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core 0


core 1


core 2


INCR(x0,1)


INCR(x1,1) PUT(y,2)


INCR(x2,1) PUT(z,1)


core 3
 INCR(x3,1) PUT(y,2)


split phase


•  All threads hear they should reconcile their per-core state

•  Stop processing per-core writes


GET(x)


INCR(x1,1)


INCR(x2,1)


INCR(x1,1)




•  Reconcile state to global store

•  Wait until all threads have finished reconciliation

•  Resume stashed read transactions in joined phase
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core 0


core 1


core 2


core 3


reconciliation phase
 joined phase


x = x + x0


x = x + x1


x = x + x2


x = x + x3


GET(x)
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core 0


core 1


core 2


core 3


x = x + x0


x = x + x1


x = x + x2


x = x + x3


reconciliation phase


GET(x)


joined phase


•  Reconcile state to global store

•  Wait until all threads have finished reconciliation

•  Resume stashed read transactions in joined phase
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core 0


core 1


core 2


core 3


GET(x)


•  Process new transactions in joined phase using OCC

•  No split data


joined phase


INCR(x)


INCR(x, 1)


GET(x)
GET(x)




Batching Amortizes the Cost of 
Reconciliation
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core 0


core 1


core 2


INCR(x0,1)


INCR(x1,1) INCR(y,2)


INCR(x2,1) INCR(z,1)


core 3
 INCR(x3,1) INCR(y,2)


GET(x)


•  Wait to accumulate stashed transactions, batch for joined phase

•  Amortize the cost of reconciliation over many transactions

•  Reads would have conflicted; now they do not


INCR(x1,1)


INCR(x2,1) INCR(z,1)
GET(x)


GET(x)


GET(x)


GET(x)


GET(x)


split phase

joined 
phase




Phase Reconciliation Summary

•  Many contentious writes happen in parallel 

in split phases

•  Reads and any other incompatible 

operations happen correctly in joined 
phases
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Outline

1.  Phase reconciliation

2.  Operations

3.  Detecting contention

4.  Performance evaluation
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Ordered PUT and insert 
to an ordered list


Operation Model

Developers write transactions as stored procedures which 
are composed of operations on keys and values:
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value GET(k) 
void PUT(k,v) 
 
void INCR(k,n) 
void MAX(k,n) 
void MULT(k,n) 
 
void OPUT(k,v,o) 
void TOPK_INSERT(k,v,o) 



Traditional key/value 
operations


Operations on numeric 
values which modify the 

existing value


Not splittable


Splittable




27 

55 

MAX Can Be Efficiently Reconciled
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core 0


core 1


core 2


MAX(x0,55) 

MAX(x1,10) 

MAX(x2,21) 21 

•  Each core keeps one piece of state xi

•  O(#cores) time to reconcile x

•  Result is compatible with any order


MAX(x0,2) 

MAX(x1,27) 

x = 55 



What Operations Does Doppel Split?


Properties of operations that Doppel can split:

– Commutative

– Can be efficiently reconciled

– Single key

– Have no return value




However:

– Only one operation per record per split phase
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Outline

1.  Phase reconciliation

2.  Operations

3.  Detecting contention

4.  Performance evaluation
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Which Records Does Doppel Split?


•  Database starts out with no split data

•  Count conflicts on records

– Make key split if #conflicts > conflictThreshold


•  Count stashes on records in the split phase

– Move key back to non-split if #stashes too high





29	
  



Outline

1.  Phase reconciliation

2.  Operations

3.  Detecting contention

4.  Performance evaluation
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Experimental Setup and 
Implementation


•  All experiments run on an 80 core Intel server 
running 64 bit Linux 3.12 with 256GB of RAM


•  Doppel implemented as a multithreaded Go 
server; one worker thread per core


•  Transactions are procedures written in Go

•  All data fits in memory; don’t measure RPC

•  All graphs measure throughput in transactions/

sec
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Performance Evaluation

•  How much does Doppel improve 

throughput on contentious write-only 
workloads?


•  What kinds of read/write workloads benefit?

•  Does Doppel improve throughput for a 

realistic application: RUBiS?
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Doppel Executes Conflicting 
Workloads in Parallel
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Doppel Outperforms OCC Even With 
Low Contention
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  20 cores, 1M 16 byte keys, transaction: INCR(x,1) on different keys


5% of writes to 
contended key




Contentious Workloads Scale Well


1M 16 byte keys, transaction: INCR(x,1) all writing same key
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LIKE Benchmark

•  Users liking pages on a social network

•  2 tables: users, pages

•  Two transactions:

–  Increment page’s like count, insert user like of page

–  Read a page’s like count, read user’s last like


•  1M users, 1M pages, Zipfian distribution of page 
popularity


Doppel splits the page-like-counts for popular pages

But those counts are also read more often
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Benefits Even When There Are 
Reads and Writes to the Same 

Popular Keys
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20 cores, transactions: 50% LIKE read, 50% LIKE write




Doppel Outperforms OCC For A 
Wide Range of Read/Write Mixes


20 cores, transactions: LIKE read, LIKE write
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Doppel does not split 
any data and performs 

the same as OCC!More stashed read transactions




RUBiS

•  Auction application modeled after eBay

–  Users bid on auctions, comment, list new items, search


•  1M users and 33K auctions

•  7 tables, 17 transactions

•  85% read only transactions (RUBiS bidding mix)


•  Two workloads:

–  Uniform distribution of bids

–  Skewed distribution of bids; a few auctions are very 

popular




39	
  



StoreBid Transaction

StoreBidTxn(bidder, amount, item) { 

 INCR(NumBidsKey(item),1) 

 MAX(MaxBidKey(item), amount) 

  OPUT(MaxBidderKey(item), bidder, amount) 

 PUT(NewBidKey(), Bid{bidder, amount, item}) 

} 

All commutative operations on 
potentially conflicting auction metadata




Inserting new bids is not likely to conflict
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Doppel Improves Throughput on an 
Application Benchmark
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Related Work

•  Commutativity in distributed systems and concurrency 

control

–  [Weihl ’88]

–  CRDTs [Shapiro ’11]

–  RedBlue consistency [Li ’12]

–  Walter [Lloyd ’12]


•  Optimistic concurrency control

–  [Kung ’81]

–  Silo [Tu ’13]


•  Split counters in multicore OSes
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Conclusion

Doppel:

•  Achieves parallel performance when many transactions 

conflict by combining per-core data and concurrency 
control


•  Performs comparably to OCC on uniform or read-heavy 
workloads while improving performance significantly on 
skewed workloads.
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http://pdos.csail.mit.edu/doppel



