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✦ scale to industry problems  
✦ efficient communication 
✦ fault tolerance 
✦ easy to use
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Iterate until stop
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Challenges for data synchronization

✦ Massive communication traffic 
★ frequent access to the shared model

✦ Expensive global barriers 
★between iterations



Task



Task

✦ a push / pull / user defined function (an iteration)



Task

✦ a push / pull / user defined function (an iteration)
✦ “execute-after-finished” dependency



Task

✦ a push / pull / user defined function (an iteration)
✦ “execute-after-finished” dependency

CPU intensive Network intensive

gradient push & pulliter 0

iter 1 gradient push & pull

Synchronous



Task

✦ a push / pull / user defined function (an iteration)
✦ “execute-after-finished” dependency

✦ executed asynchronously

CPU intensive Network intensive

gradient push & pulliter 0

iter 1 gradient push & pull

Synchronous



Task

✦ a push / pull / user defined function (an iteration)
✦ “execute-after-finished” dependency

✦ executed asynchronously

CPU intensive Network intensive

gradient push & pulliter 0

iter 1 gradient push & pull

iter 1 gradient push & pull

Synchronous

gradient push & pulliter 0
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Flexible consistency

✦ Trade-off between algorithm efficiency and 
system performance

1-bounded delay 1 2 3 4 5

Eventual 1 2 3 4

1 2 3Sequential 4
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User-defined filters

✦ Selectively communicate (key, value) pairs
✦ E.g. , the KKT filter 
★send pairs if they are likely to affect the model 
★>95% keys are filtered in the ad click prediction task
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Fault tolerance

worker 0 server 0 server 1
push x push f(x)

ackack

push f(x+y)

ack

push x
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ack

ackworker 0

server 0 server 1

worker 1

✦ Model is partitioned by consistent hashing
✦ Default replication:  Chain replication (consistent, safe)

✦ Option: Aggregation reduces backup traffic (algo specific)
implemented by efficient 

vector clock
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(Key, value) vectors for the shared parameters

✦ Good for programmers:  Matches mental model 
✦ Good for system:  Expose optimizations based upon 

structure of data

math sparse vector (key, value) store

i1 i2 i3

(i1,     ) (i2,     ) (i3,     )

Example: computing gradient 
gradient = dataT × ( − label × 1 / ( 1 + exp (label × data × model))
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Sparse Logistic Regression

Method Consistency LOC

System-A L-BFGS Sequential 10K

System-B Block PG Sequential 30K

Parameter Server Block PG Bounded Delay + KKT 300

✦ Predict ads will be clicked or not
✦ Baseline: two systems in production

✦ 636T real ads data 
★170 billions of examples, 65 billions of features 

✦ 1,000 machines with 16,000 cores
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Topic Modeling (“LDA”)

✦ Gradient descent with eventual consistency 
✦ 5B users’ click logs,  Group users into 1,000 

groups based on URLs they clicked

1,000 machines
6,000 machines

time (hour)
0 10 20 30 40 50 60 70

4x speed up

large

small
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Parameter Server 
Data were collected on April’14
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Efficient 
communication

Fault tolerance Easy to use

Code available at 
parameterserver.org

Evaluation

http://parameterserver.org


Q&A


