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Join us in Broomfield, CO, October 6-8, 2014, for the 11th USENIX Symposium on Operating Systems Design and

Overview

Implementation. OSDI "14 will bring together professionals from academic and industrial backgrounds in what has become the
premier forum for discussing the design, implementation, and implications of systems software. The program includes two

poster sessions and over 40 paper presentations on data, security, cloud computing, storage, transactions, and much more.
Register Today!

The following workshops are co-located with OSDI '14, and will take place on Sunday, October 5, 2014:

e Diversity "14: 2014 Workshop on Supporting Diversity in Systems Research
e HotDep '14: 10th Workshop on Hot Topics in System Dependability
e HotPower '14: 6th Workshop on Power-Aware Computing and Systems

e INFLOW '14: 2nd Workshop on Interactions of NVM/Flash with Operating Systems and Workloads
e TRIOS "14: 2014 Conference on Timely Results in Operating Systems
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Overview of machine learning

raw data trainingdata ~ Machine learning system model
(key,value) pairs

Scale of Industry problems %
+100 billion examples | | @ © @9 66 &0
P + scale to industry problems

+ 10 billion features
+ 1T —=1P training data + fault tolerance
+100-1000 machines + gasy to use
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+ efficient communication
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Workers pull the working set of

lterate until stop
Server machines workers compute

workers push s
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Challenges for data synchronization

Massive communication traffic
frequent access to the shared model

Expensive global barriers
between iterations
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+a push / pull / user defined function (an iteration)
+ ‘execute-after-finished” dependency

. CPU intensive . NetworkintenM
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gradient push & pull

+ executed asynchronously

iter 0 gradient push S pull M

iter 1 gradient push & pull
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Ad click prediction
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User-defined filters

Selectively communicate (key, value) pairs

E.g., the KKT filter

send pairs If they are likely to affect the model
>95% keys are filtered in the ad click prediction task
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Fault tolerance

+ Model is partitioned by consistent hashing

+ Default replication: Chain replication (consistent, safe)

) ack ack

BN server 1
push f(x)

+ Option: Aggregation reduces backup traffic (algo specific)

worker 0 NN server 0 I

push

implemented by efficient
vector clock

o server 0 NI server 1

push f X+“
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(Key, value) vectors for the shared parameters

math sparse vector (key, value) store

H B | (1, 19) (i, B9) (i3, &)

l1 b) i3

Good for programmers: Matches mental model

Good for system: Expose optimizations based upon
structure of data

Example: computing gradient
gradient = data” x (- label x 1 /(1 + exp (label x data x model))
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Sparse Logistic Regression

Predict ads will be clicked or not
Baseline: two systems In production

~ Method Consistency  LOC
System-A L-BFGS Sequentlal 10K
System-B Block PG Sequentlal SOK

..................................................................................................................................................................................................................

Parameter Server Block PG Bounded Delay + KKT 300
6567 real ads data
170 billions of examples, 65 billions of features

1,000 machines with 16,000 cores
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Topic Modeling ("LDA”)

Gradient descent with eventual consistency

5B users’ click logs, Group users into 1,000
groups based on URLs they clicked

=== 1000 machines
=== 6 000 machines
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Largest experiments of related systems
Data were collected on April'14

Parameter Server
10"] Sparse LR @
10" Adam (DNN) @ LDA
nodel 10° petuum (Lasso) @ @ Distbelief (DNN)

. 10° | Naiad(LR) @ @ W YahooLDA (LDA
S1Ze 107 W LR @

10° Ul bace (LR)I Graphlab (LDA)
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.l
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Code available at
( parameterserver.org )
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http://parameterserver.org
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