Scaling Distributed Machine Learning with the

Mu Li muli@cs.cmu.edu

Machine learning is concerned with systems that can learn from data

raw data

training data

machine learning system

(key,value) pairs

model

raw data

training data

machine learning system

model (key,value) pairs

Scale of Industry problems
+ 100 billion examples
+ 10 billion features
+ 1T - 1P training data
+ 100-1000 machines

training data

raw data

machine learning system

(key,value) pairs

model

Scale of Industry problems + 100 billion examples

- + 10 billion features
- + 1T 1P training data

+ 100-1000 machines

P A R A M E T E R + scale to industry problems

- efficient communication
- fault tolerance
- easy to use

Industry size machine learning problems

Training data

Server machines

Workers **pull** the working set of model

Server machines

Workers **pull** the working set of model Iterate until stop

workers compute gradients

Server machines

Workers **pull** the working set of model Iterate until stop

workers compute gradients workers **push** gradients

Server machines

Workers **pull** the working set of model Iterate until stop workers compute gradients workers **push** gradients update model

Server machines

Workers **pull** the working set of model Iterate until stop workers compute gradients

workers **push** gradients update model

workers **pull** updated model

Server machines

Industry size machine learning problems

Efficient communication

Challenges for data synchronization

Challenges for data synchronization

Massive communication traffic

\star frequent access to the shared model

Challenges for data synchronization

Massive communication traffic

- \star frequent access to the shared model
- Expensive global barriers
 - **★** between iterations

a push / pull / user defined function (an iteration)

a push / pull / user defined function (an iteration)

* "execute-after-finished" dependency

a push / pull / user defined function (an iteration)

"execute-after-finished" dependency

a push / pull / user defined function (an iteration)

"execute-after-finished" dependency

+ executed asynchronously

a push / pull / user defined function (an iteration)

"execute-after-finished" dependency

+ executed asynchronously

Flexible consistency

Trade-off between algorithm efficiency and system performance
Flexible consistency

Trade-off between algorithm efficiency and system performance

Flexible consistency

Trade-off between algorithm efficiency and system performance

Flexible consistency

Trade-off between algorithm efficiency and system performance

Ad click prediction

User-defined filters

User-defined filters

Selectively communicate (key, value) pairs

User-defined filters

- Selectively communicate (key, value) pairs
 E.g., the KKT filter
 - \star send pairs if they are likely to affect the model
 - *****>95% keys are filtered in the ad click prediction task

Industry size machine learning problems

Efficient communication

Fault tolerance

Model is partitioned by consistent hashing

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)

Option: Aggregation reduces backup traffic (algo specific)

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)

Option: Aggregation reduces backup traffic (algo specific)

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)

Option: Aggregation reduces backup traffic (algo specific)

Industry size machine learning problems

Efficient communication

(Key, value) vectors for the shared parameters

(Key, value) vectors for the shared parameters

 Good for programmers: Matches mental model
 Good for system: Expose optimizations based upon structure of data (Key, value) vectors for the shared parameters

- + Good for programmers: Matches mental model
- Good for system: Expose optimizations based upon structure of data

Example: computing gradient gradient = data^T × (– label × 1 / (1 + exp (label × data × model)) Industry size machine learning problems

Efficient communication

Sparse Logistic Regression

Predict ads will be clicked or not

Sparse Logistic Regression

- Predict ads will be clicked or not
- Baseline: two systems in production

	Method	Consistency	LOC
System-A	L-BFGS	Sequential	10K
System-B	Block PG	Sequential	30K
Parameter Server	Block PG	Bounded Delay + KKT	300

Sparse Logistic Regression

- Predict ads will be clicked or not
- Baseline: two systems in production

	Method	Consistency	LOC
System-A	L-BFGS	Sequential	10K
System-B	Block PG	Sequential	30K
Parameter Server	Block PG	Bounded Delav + KKT	300

+ 636T real ads data

★ 170 billions of examples, 65 billions of features

+ 1,000 machines with 16,000 cores

time (hour)

- Gradient descent with eventual consistency
- SB users' click logs, Group users into 1,000
 groups based on URLs they clicked

- Gradient descent with eventual consistency
- SB users' click logs, Group users into 1,000
 groups based on URLs they clicked

- Gradient descent with eventual consistency
- SB users' click logs, Group users into 1,000
 groups based on URLs they clicked

- Gradient descent with eventual consistency
- SB users' click logs, Group users into 1,000
 groups based on URLs they clicked

Data were collected on April'14

Data were collected on April'14

Parameter Server

Data were collected on April'14

Parameter Server

Data were collected on April'14

Parameter Server

Industry size machine learning problems

Efficient communication

