Code-Pointer Integrity

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer,
George Candea, R. Sekar, Dawn Song

ul PURDUE

StOT}yBI'?Ok UNIVERSITY
University

_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Control-Flow Hijack Attack

Memory

@ 1int xg = buf + 1input; qp*

@ *q = 1nput2; @ Ut

@ .Z*func_ptr)(); @)

@ Attacker corrupts a data pointer
@ Attacker uses it to overwrite a code pointer
@ Control-flow is transferred to shell code

Acrobat Firefox IE OS X — Linux — Average
120

©
-

Control-Flow Hijack CVEs
o
-

/
N
O/’<\/ |

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

W
O

Control-flow hijacks are still abundant today!

Memory safety prevents control-flow hijacks

@ python t@ Java C:Ii Q'Y Swift

... but memory safe programs still rely on C/C++ ...

Sample Python program
(Dropbox SDK example):

MEMORY

SAFETY
FIRST

Python program 3 KLOC of Python

...

libe 2500 KLOC of C

Memory safety can be retrofitted to C/C++

C/C++ Overhead
SoftBound+CETS 116%
CCured 56%

MEMORY

SAFETY
FIRST

(language modifications)

Watchdog 299,

(hardware modifications)

AddressSanitizer 7309,

(approximate)

State of the art:
Control-Flow Integrity

Static property:
limit the set of functions that
can be called at each call site

Coarse-grained CFI and Finest-grained CFI
can be bypassed [1-4] has 10-21% overhead [5-6]

| Goktas et al., IEEE S&P 2014
| Goktas et al., USENIX Security 2014 [5] Akritidis et al., IEEE S&P 2008

| Davi et al., USENIX Security 2014 6] Abadi et al., CCS 2005
| Carlini et al., USENIX Security 2014

BN =

Programmers have to choose

Safety vs Flexibility
Security Performance

Code-Pointer Integrity

provides both

__ Control-flow Unmodified C/C++
hijack protection
Practical protection 0.5 - 1.9% overhead
Guaranteed protection 8.4 - 10.5% overhead

Key insight: memory safety tor code pointers only

Tested on:

4 @ python %QLite lamn © OpenssL
' FreeBSD, Q\‘d:’ -

hardened PostgreSQL &

Overview

Does it solve a real problem?
=P How does it work?
Threat model & background
Practical protection: CPS
Guaranteed protection: CPI
How secure is it?
How practical is it?

Threat Model

o Attacker can read/write data, read code
e Attacker cannot:;
 Modify program code

* Influence program loading

Memory Safety

program instrumentation

char *xbuf = malloc(10): 1. Assign metadata Memory
buf_lower = p; buf_upper = p+10; q—

buf
char *q = buf + input; 2. Propagate metadata
q_Llower = buf_Llower; q_upper = buf_upper; func_ptr
if (g < g_lower || q >= g_upper-size)

abort();

xq = input2; 3. Check metadata

(xfunc_ptr) ();

116% average performance overhead
(Nagarakatte et al., PLDI'O9 and ISMM’10)

All-or-nothing protection

Memory Safety
116% average performance overhead

Can memory safety be enforced
for code pointers only ?

Control-flow hijack protection
1.9% or 8.4% average performance overhead

Practical Protection (CPS): Heap

Instructions that access code pointers are
int g = buf + 1nput; identified using type-based static analysis

*q = 1nput?2;
Separation is enforced using hardware-

(xfunc_ptr)(); 7 enforced instruction-level isolation
Code Safe Regular All

pointlers Memory Memory non-code-

on .

y Program ouf pointer data

< memory P
Is separated Memory
func_ptr R layout
unchanged
2.5% 97.5%
Memory accesses MeMmory accesses

(on SPEC2006 CPU) (on SPEC2006 CPU)

Practical Protection (CPS): Stack

int foo() {
char buf[16];
int r;
r = scanf(“%s”, buf);
return r;
}
Only locals
All locals that |Sgfe Regular accessed
are only Stack Stack through
accessed pointers
safely < Stacks are
r separated T Not needed in
All accesses ret address most small
are safe functions

Safe stack adds <0.1% performance overhead!

Practical Protection (CPS):
Memory Layout

Regular memory
(non-code-pointer data)

Safe memory
(code pointers)

Only instructions that operate on code
pointers can access the safe memory

Hardware-based _/‘
instruction-level isolation

Safe Heap Regular Heap

Safe Safe Regular | |Regular
Stack Stack Stack Stack
(thread1) (thread?) (thread1) (thread?)

Code (Read-Only)

The CPS Promise

Under CPS, an attacker
cannot forge a code pointer

Under CPS, an attacker s this enough®

cannot forge a code pointer In practice, yes!
Contrived example of an attack
on a CPS-protected program Memory
@ int *q = p + input; D func_ptr
2 *q = lnPUtz; i~ struct_ptr
With CPS: D
® func_ptr = struct_ptr—>f; apirtoanother ;
. — function or JilCl Dl
@ (xfunc_ptr)(); oo ®/
valid
function

@ Attacker corrupts a data pointer

@ Attacker uses it to corrupt a struct pointer

@ Program loads a function pointer from wrong
location in the safe memory

@ Control-flow is transferred to different function whose
address was previously stored in the safe memory

Under CPS, an attacker s this enough®

cannot forge a code pointer In practice, yes!
, |
Contrived example of an attack
on a CPS-protected program Memory

int xq = p + input; Wi CPl Q
*q = 1nputZ; sensitive and struct_ptr

- cannot be
func_ptr = struct_ptr—>f; corrupted funcl ptr

(xfunc_ptr)();

valid
function

Precise solution: protect all sensitive! pointers

1Sensitive pointers = code pointers and
pointers used to access sensitive pointers

Guaranteed Protection (CPI)

Sensitive pointers = code pointers and
pointers used to access sensitive pointers

« CPIl identifies all sensitive pointers using

over-approximate type-based static analysis:
is_sensitive(v) = is_sensitive_type(type of v)

* Over-approximation doesn’t hurt security,
it only affects performance:

On SPEC2006 <6.5% memory accesses are sensitive

Guaranteed Protection (CPI):
Memory Layout

Accesses
are checked for
memory safety

Accesses
are fast

Regular memory
(non-sensitive data)

Safe memory
(sensitive pointers and metadata)

Only instructions that operate on sensitive :
pointers can access the safe memory -

Hardware-based _/‘
instruction-level isolation

Safe Heap Regular Heap

Safe Safe Regular | |Regular
Stack Stack Stack Stack
(thread1) (thread?) (thread1) (thread?)

Code (Read-Only)

Guaranteed Protection (CPI)

Guaranteed memory safety for
all sensitive'’ pointers

|

Guaranteed protection against
control-flow hijack attacks
enabled by memory bugs

1Sensitive pointers = code pointers and pointers used to access sensitive pointers

INnstruction-Level |solation

Dedicated
segment register,
| | used only to
1nt g = ptr + 1nput; access the safe
g = 1nput?2; movl 1input2, ¢ memory
(xfunc_ptr)(); call *x%gs:func_ptr
X80-32 X86-04 Perfect hiding:
gs.base —» regular memory
Safe Regular contains no pointers
Memory Memory to safe memory
gs. limit —» _ <+« fs.base
ds.base —» are i
Regular Memory (randomized)

Memory Alternative:

ds.limit = Software Fault Isolation

CPS CPl

e Separate sensitive pointers and regular data

Sensitive pointers = ~ Sensitive pointers =
code pointers ~coae pointers +
~indirect pointers to sensitive pointers

* Accessing sensitive pointers is safe

Separation Separation +
 runtime checks

* Accessing regular data is fast
Instruction-level safe region isolation

Overview

Does it solve a real problem?
=P How does it work?
Threat model & background
Practical protection: CPS
Guaranteed protection: CPI
How secure is it?
How practical is it?

Overview

Does it solve a real problem?

ow does it work?

=P How secure is it?
How practical is it?

How secure |Is 117

* RIPE' runtime intrusion prevention evaluator:

- Both CPS and CPI prevent all attacks from RIPE
* Future attacks:

» CPI correctness proof in the paper

"Wilander at al., ACSAC 2011

Protects Average

Against Technigue Security Guarantees Overhead
Memory |
corruption | Memory Safety | Precise 116%
vulnerabilities | 5
g CPI . Precise 8.4-10.5%
5 (Guaranteed protection)
. CPS . Strong 0.5-1.9%
(Practical protection)
Control-flow = _. . z , | g
hilack ~ Finest-grained Medium (attacks may exist) 10-21%
Jabn | CFl Goktas el., IEEE S&P 2014 i
vulnerabilities ;
| Weak (known attacks) 5
~ Coarse-grained | gekias el IEEE S&P 2014 and USENIX Security 2014, 4 2-16%
| CFl Davi et al, USENIX Security 2014 i ' °
5 Carlini et al., USENIX Security 2014
ASLR
DEP Weakest 0%

Stack cookies (bypassable + widespread attacks)

Overview

Does it solve a real problem?

ow does it work?

=P How secure is it?
How practical is it?

Overview

Does it solve a real problem?

ow does it work?
oW secure is it?

=) How practical is it?

mplementati

s It practical”

on
?

s it fast enough?

Implementation

cc —fcpl foo.cC

» |LVM-based prototype at http://levee.epfl.ch

* Plan to integrate upstream into LLVM

http://levee.epfl.ch

Implementation

* |LLVM-based prototype at http://levee.epfl.ch

e Front-end (clang):
Collect type information

 Back-end (LLVM):
CPI/CPS and SafeStack instrumentation passes

* Runtime support (compiler-rt or libc):
Safe heap and stacks management

http://levee.epfl.ch

Full OS Distribution

with CPS/CPI protection

, FreeBSD

hardened

 Recompiled the entire FreeBSD userspace...

e ... and more than 100 packages

@ python W lam OpenSSL
wesh m |

% -

(Q i PostgreSQL fﬂ‘% Apache

Performance overhead on Phoronix

|
pgseer?gg . B Safe stack pnly |
encode-mp3 | CPS (practical protecnorj)
: - S B CPI (guaranteed protection)
graphics-magick 1 —
graphics-magick 2 gl
|

graphics-magick 3
graphics-magick 4 | ==
graphics-magick 5 |

hmmer
postmark -
sqlite -_
pybench "
dcraw __
crafty '_
compress-lzma —
compress-pbzip2 —
c-ray | g Safe stack: 0.01%
CPS: 0.5%
eaen | CPL_ 105%

-5% 5% 15% 25% 35% 45% 55% 65% 5%

Performance overhead on SPEC2006 CPU

400_5(?; lbbezr;gg = B Safe stack only |
403 gce o CPS (practical protection)
429 mcf . B CPI (guaranteed protection)
445_gobmk | I
456_hmmer —
458_sjeng L
462_libquantum -
464_h264ref

471_omnetpp
473_astar ,
483_xalanbmk
433_Milc | —
444 _namd
447 _dealll
450_soplex
453_povray _
4821?&':;2 L Safe stack: 0.03%
CPs: 1.9%

CPI: 8.4%

-5% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Average
Median

Overview

Does it solve a real problem?

ow does it work?

OwW secure is it”
=) How practical is it?
mplementation

s it fast enough?
|s it practical?

Code-Pointer Integrity

__ Control-flow Unmodified C/C++
hijack protection
Practical protection 0.5 - 1.9% overhead
Guaranteed protection 8.4 - 10.5% overhead

Key insight: memory safety tor code pointers only

A~ @ python’ %QLite lamn © OpenssL
| | Free BS D® Q\\'\GSM%‘ _
hardened PostgreSQL & g‘?;, Apaché

http://levee.epfl.ch

http://levee.epfl.ch

