Ironclad Apps: End-to-End Security via
Automated Full-System Verification

Jon Howell Jay Lorch Arjun Narayan

Bryan Parno Danfeng Zhang Brian Zill

Microsoft’

Research

CHASE ©

Online and Mobile Security

« Chase Online, the Chase Mobile app and
the Chase Mobile website use Secure
Socket Layer (SSL) technology

« We periodically review our operations and
business practices to make sure they
comply with the corporate policies and
procedures we follow to protect
confidential information

An Ironclad app guarantees to remote parties
that every instruction it executes adheres to
a high-level security spec.

My password will never leak

lronclad combines:

 Late launch
* Trusted Computing

e Software verification

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

lronclad combines:

e Late launch

Secure Remote
Equivalence

* Trusted Computing

Software verificationL

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

Reasonable
effort

Entire
software

Verification implies:
* No buffer overflows C ’.
C

* No code in
We always know what the app

* No type-sa will do with private data!

* No informa

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

* No crypto implementation flaws

We don’t prove:

* Absence of side channels
e Liveness

* Physical security

Verification goals

* End-to-end security
— Complete
— Low-level

* Rapid development

* Non-goal: Verify existing code

* Long-term: Performance matches unsafe code

oo
~

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

. = Trusted

. = Untrusted

Verification methodology

Hich- ~f: ——
fiable,
call edx := Mov(2); '1F)IEErT](mov edx, 2

loop:
|5‘E¥agjan: 2 <=_edx < _eax; N
invariant MemInv(...);

if (edx >= eax)
{ goto loopEnd; }

loop:

cmp edx, eax
jae loopEnd

\Jprocedure CheckPrimality(p:int) returns (b:bool)
requires p >= 0;
ensures b == IsPrime(p);

var divisor := 2;
while divisor < p
invariant 2 <= divisor <= p;

{

Verifier v

rVerification methodology: Ee_ngfi_tgl

High Rapid Verifiable, high-level

leve gevelopment : ,
spev implementation

Ironclad compiler
Simple and

declarative

‘ Low-level .
Assembler

Verifier verification

+ Linker

Writing trustworthy specifications

Idiomatic
specification
= 3439 pages -

1,364 lines of spec
_ - 296 lines of spec
L xire, yoreb B> (secure randomness

(< 60 instructions)
+y) % 0x106000000; + attestation)

..l”’._
procedure’s ¥
MY e
ensures X o=

type core = core(regs:[int]int, eip:int, ..., segments, paging, ...);
type machine = machine(cores:[int]core, mem:[int]int, io:IO0State);

10

Writing trustworthy specifications

predicate ValidTransition(old state:NotaryState,
new_state:NotaryState,
request:Request,
response:Response, ...)

App

{

match request

function SHA256(messageBits:seq<int>) : seg<int>
requires |messageBits| < power2(64);

requires IsBitSeq(messageBits); request)

m Y
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

Hardware specs

11

Architecture

App
spec

Std. Lib App Common
UDP/IP Datatypes
Ethernet SHA-256 BigNum
Net Driver TPM Driver Core Math

(ON) Late Device

Hardware specs

12

Challenge: Whole-system verification

procedure CheckPrimality(p:int) returns (b:bool)
requires b >= 0:
ensures |b == IsPrime(p); Functional
{ verification

var divisor := 2;
while divisor < p (correctness)

invariant 2 <= divisor <= p;

{
all
F p055|ble ==y permitted
inputs output\Nords push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

r_outb(..., x:reg)
2?2?

procedure
requires

13

Solution: Relational verification

procedure instr _inb(..., X:reg)
ensures public(x);

—

push ebp
mov ebp, esp

ﬁ
sub esp, 4 Declassifier
’ —

mov eax, 8

procedure instr outb(..., x:reg)
requires public(x);

—

Declassify X by proving the
abstract app would have output X

14

Rapid verification

Automated tools Modular verification

SymDiff |

15

Ironclad Apps
5

Password Protector

password letmein

qwerty trustnol

Trusted Incrementer

Differentially Private DB

.,

Insert datum

Query Privacy
budget

16

Lessons learned

Opaque
© Non-recursive functions © Forall/exists @ Recursive functions
© Addition & subtraction © Arrays/seqs ® General mul/div/mod

© Mul/div/mod by small constants
Custom

mathlibrary

15t Yorsion: | sth_Lib_] (CApp Commo. |
M How to write concise specs J (_Datatypes | (_RSA |

How to write libraries SHA-256 l [_BiTﬂ_m_J

| Core Mat.

Lat-
Ia\ .ch j \ J L) | l

Benefits of refinement types

17

Eval: Proof burden

Previously 22+ pys > &

Proof hints : Implementation LoC

Apps — Average 4.8 :1
Crypto (SHA, HMAC, RSA) IS
Bigint Lib Previously >25: 1

Math Lib

Std. Lib (bytes, words, arrays)
UDP/IP/Ethernet

Network Driver

TPM Driver

0S

|

o
N
N
(@)
00

10 12 14 16
Ratio

18

Eval: System size

Software Hardware

B Trusted Spec 1796 LoC 1750 LoC SW Impl : Spec=3.9:1
B Implementation 6971 LoC

41,566 instructions

Apps

Crypto (SHA, HMAC, RSA)
Bigint Lib

Math Lib

23.1:1

Std. Lib (bytes, words, arrays)
UDP/IP/Ethernet

Network Driver

TPM Driver

0S

o

500 1000 1500 2000 2500

Lines
19

Eval: Performance

90
80
70
60
50
ns/B 10
30
20
10

SHA-256
1000000
100000
Cut by 84%
Within 30% of OpenSSL Rt
1000
ms
100
10
H B 1
% N\ N
3 g\Q/Q Q}s')

RSA private (1024)

Improved by 8300x

Still 22x too slow ®

Related work

* Early security kernels
— Examples: KVM/370, VAX VMM, SCOMP, GEMSOS
— Formally specified, but no connection to implementation

* Recent verified systems
— Examples: selL4, VCC, PROSPER, CompCert, Jitk
— Focus on one layer
— Many verify C code => Good performance
— Typically less automation => More human proof burden

Conclusions

* Ironclad guarantees end-to-end security to remote
parties: Every instruction meets the app’s security spec

e Achieved via:

— New and modified tools
— A methodology for rapid verification of systems software

* Verification of systems code is quite feasible!

http://research.microsoft.com/ironclad

Thank you!

ironclad@microsoft.com

22

