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been unsuccessful [...]

 Linux kernel mailing list (5/1/2013)
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● Stress testing approach

– Hope to fnd the interleaving

● Systematic approach

– Take full control of the interleavings

– Existing tools focus on user-mode applications

Approaches to explore interleavings

This talk

Focus on operating system kernels
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Kernel-mode challenges

● Kernel doesn't have a good 
instrumentation interface 

● An alternative would be to modify the kernel

– But kernel modifcations:
● Change the tested software
● Are non-trivial 
● Hinder portability

Avoid kernel modifcations

Kernel               Scheduler
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App

Kernel

SKI's approach

SKI

HW-level abstractions
mov, add, jmp, registers, APIC 

VM

VMM

Challenges

1. How to control the schedules?

2. Which contexts are schedulable?

3. Which schedules to choose?
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Leverage thread afnity and control CPUs
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3. Which schedules to choose?

● PCT: User-mode scheduling algorithm [ASPLOS'10]

– Run the highest priority live threads

– Create schedule diversity

● Generalize with interrupt support

– Detect arrival / end

– Control dispatch

● Reduce interleaving space 

Generalize user-mode systematic testing algorithms
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Implementation

● Implemented SKI by modifying QEMU (VMM)

– No kernel changes required

● Built a user-mode library (VM)

– Flags start/end of tests and sends results to VMM

– Used library to implement several test-cases

● e.g., fle system tests

● Implemented several optimizations
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Detecting and diagnosing bugs with SKI

● SKI supports diferent types of bug detectors

– Crash and assertion violations

– Data races

– Semantic bugs (e.g. disk corruption)

● SKI produces detailed execution traces
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● Challenges testing kernel code

● SKI's approach

● Implementation

● Evaluation

Finding kernel concurrency bugs

SKI

 2. Finding previously unknown bugs
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1. Regression testing: setup

● Searched for previously reported bugs

– In kernel bugzilla, mailing lists, git logs

– Well documented reports and diverse set of bugs   

● Created SKI test suites for these bugs

– By adapting the stress tests in the bug reports
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(sched/h)
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3.6.1
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bugs in seconds
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1. Regression testing: results

SKI Stress tests

Bug Kernel Component Detector Schedules
 Throughput

(sched/h)
Schedules

A
Linux
2.6.28
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pipes

Crash 28 302,000        NA (>24h)
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Linux 

3.2
Inotify +
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Crash 53 169,300 200,000 (4h)

C Linux 
3.6.1

Proc + Ext4 Semantic 51 218,700        800 (1 min)

D FreeBSD
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Sockets Semantic 3519 501,400        NA (>24h)
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1. Regression testing: results

SKI Stress tests

Bug Kernel Component Detector Schedules
 Throughput

(sched/h)
Schedules

A
Linux
2.6.28

Anonymous
pipes

Crash 28 302,000        NA (>24h)

B
Linux 

3.2
Inotify +
FAT32

Crash 53 169,300 200,000 (4h)

C Linux 
3.6.1

Proc + Ext4 Semantic 51 218,700        800 (1 min)

D FreeBSD
8.0

Sockets Semantic 3519 501,400        NA (>24h)

Some stress tests
were inefective
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2. Finding previously unknown bugs

● Created a SKI test suit for fle systems

– Adapted the existing fsstress test suit

– Tested several fle systems

● Bug detectors 

– Crashes, warnings, data races, semantic errors (fsck)

● Tested recent versions of Linux
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6 3.12.2 Btrfs Warning Fixed

7 3.13.5 Logfs Crash (Null-pointer) Reported

8 3.13.5 Logfs Crash (Invalid paging) Reported

9 3.13.5 Jfs Crash (Assertion violation) Reported

10 3.13.5 Ext4 Data race Fixed

11 3.13.5 VFS Data race Reported
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2. Finding previously unknown bugs

Ofcial Linux releases
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Bug Linux FS Detector / Failure Status
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2. Finding previously unknown bugs
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Bug Linux FS Detector / Failure Status

1 3.11.1 Btrfs Crash (Null-pointer) Fixed

2 3.11.1 Btrfs Crash (Null-pointer) + Warning Fixed

3 3.11.1 Btrfs Warning Fixed

4 3.11.1 Btrfs Fsck (References not found) Reported

5 3.11.1+p Btrfs Crash (Null-pointer) Fixed
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2. Finding previously unknown bugs

Important fle systems
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Bug Linux FS Detector / Failure Status

1 3.11.1 Btrfs Crash (Null-pointer) Fixed

2 3.11.1 Btrfs Crash (Null-pointer) + Warning Fixed

3 3.11.1 Btrfs Warning Fixed

4 3.11.1 Btrfs Fsck (References not found) Reported

5 3.11.1+p Btrfs Crash (Null-pointer) Fixed

6 3.12.2 Btrfs Warning Fixed

7 3.13.5 Logfs Crash (Null-pointer) Reported

8 3.13.5 Logfs Crash (Invalid paging) Reported

9 3.13.5 Jfs Crash (Assertion violation) Reported

10 3.13.5 Ext4 Data race Fixed

11 3.13.5 VFS Data race Reported

2. Finding previously unknown bugs

Data loss
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Current limitations and future work

● Bugs in kernel scheduler code

– SKI pins tested threads

→ Represent a small set of bugs

● Bugs in device drivers

– SKI supports a large set of devices but not all

→ Implement SKI with binary instrumentation techniques

● Bugs that depend on weak memory models

– SKI currently implements a strong memory model

→ Generalize SKI to also expose these bugs
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+

Finds and reproduces
real-world kernel
concurrency bugs

SKI is
Efective

No modifcations
to the kernel

SKI is
Practical

Full control of the 
kernel interleavings

SKI is
Systematic

Conclusion

Fast
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