
Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

SKI: Exposing Kernel Concurrency Bugs
through Systematic Schedule Exploration

Pedro Fonseca

Rodrigo Rodrigues Björn Brandenburg

(MPI-SWS)

(NOVA University of Lisbon) (MPI-SWS)

OSDI 2014

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Kernel concurrency bugs

● Bugs that depend on the instruction interleavings

– Triggered only by a subset of the interleavings

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Kernel concurrency bugs

● Bugs that depend on the instruction interleavings

– Triggered only by a subset of the interleavings

● Plenty of kernel concurrency bugs in kernels!

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Kernel concurrency bugs

● Bugs that depend on the instruction interleavings

– Triggered only by a subset of the interleavings

● Plenty of kernel concurrency bugs in kernels!

The bug is a race and not always easy to reproduce. [...] On my
particular machine, [the test case] usually triggers [the bug]
within 10 minutes but enabling debug options can change the
timing such that it never hits. Once the bug is triggered, the
machine is in trouble and needs to be rebooted.

The bug is a race and not always easy to reproduce. [...] On my
particular machine, [the test case] usually triggers [the bug]
within 10 minutes but enabling debug options can change the
timing such that it never hits. Once the bug is triggered, the
machine is in trouble and needs to be rebooted.

 Linux 3.0.41 change log

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Kernel concurrency bugs

● Bugs that depend on the instruction interleavings

– Triggered only by a subset of the interleavings

● Plenty of kernel concurrency bugs in kernels!

The bug is a race and not always easy to reproduce. [...] On my
particular machine, [the test case] usually triggers [the bug]
within 10 minutes but enabling debug options can change the
timing such that it never hits. Once the bug is triggered, the
machine is in trouble and needs to be rebooted.

The bug is a race and not always easy to reproduce. [...] On my
particular machine, [the test case] usually triggers [the bug]
within 10 minutes but enabling debug options can change the
timing such that it never hits. Once the bug is triggered, the
machine is in trouble and needs to be rebooted.

 Linux 3.0.41 change log

[The bug] was quite hard to decode as the reproduction time
is between 2 days and 3 weeks and intrusive tracing
makes it less likely [...]

[The bug] was quite hard to decode as the reproduction time
is between 2 days and 3 weeks and intrusive tracing
makes it less likely [...]
 Linux 3.4.41 change log

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Kernel concurrency bugs

● Bugs that depend on the instruction interleavings

– Triggered only by a subset of the interleavings

● Plenty of kernel concurrency bugs in kernels!

The bug is a race and not always easy to reproduce. [...] On my
particular machine, [the test case] usually triggers [the bug]
within 10 minutes but enabling debug options can change the
timing such that it never hits. Once the bug is triggered, the
machine is in trouble and needs to be rebooted.

The bug is a race and not always easy to reproduce. [...] On my
particular machine, [the test case] usually triggers [the bug]
within 10 minutes but enabling debug options can change the
timing such that it never hits. Once the bug is triggered, the
machine is in trouble and needs to be rebooted.

 Linux 3.0.41 change log

[The bug] was quite hard to decode as the reproduction time
is between 2 days and 3 weeks and intrusive tracing
makes it less likely [...]

[The bug] was quite hard to decode as the reproduction time
is between 2 days and 3 weeks and intrusive tracing
makes it less likely [...]
 Linux 3.4.41 change log

Three of the fve 3.4.9 machines [...] locked up.
I've tried reproducing the issue, but so far I've
been unsuccessful [...]

Three of the fve 3.4.9 machines [...] locked up.
I've tried reproducing the issue, but so far I've
been unsuccessful [...]

 Linux kernel mailing list (5/1/2013)

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

● Stress testing approach

– Hope to fnd the interleaving

Approaches to explore interleavings

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

● Stress testing approach

– Hope to fnd the interleaving

● Systematic approach

– Take full control of the interleavings

– Existing tools focus on user-mode applications

Approaches to explore interleavings

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

● Stress testing approach

– Hope to fnd the interleaving

● Systematic approach

– Take full control of the interleavings

– Existing tools focus on user-mode applications

Approaches to explore interleavings

This talk

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

● Stress testing approach

– Hope to fnd the interleaving

● Systematic approach

– Take full control of the interleavings

– Existing tools focus on user-mode applications

Approaches to explore interleavings

This talk

Focus on operating system kernels

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

● Testing applications versus kernels

● Our approach

● Implementation

● Evaluation

Finding kernel concurrency bugs

SKI

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

App

Kernel

Kernel-level abstractions
Threads and sync. objects

Existing user-mode
systematic tools
LD_PRELOAD, ptrace

Existing user-mode tools

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

App

Kernel

Kernel-level abstractions
Threads and sync. objects

Existing user-mode
systematic tools
LD_PRELOAD, ptrace

Existing user-mode tools

Scheduler

User-mode testing tool

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Kernel-mode challenges

● Kernel doesn't have a good
instrumentation interface

Kernel Scheduler

Testing tool

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Kernel-mode challenges

● Kernel doesn't have a good
instrumentation interface

● An alternative would be to modify the kernel

– But kernel modifcations:

Kernel Scheduler

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Kernel-mode challenges

● Kernel doesn't have a good
instrumentation interface

● An alternative would be to modify the kernel

– But kernel modifcations:
● Change the tested software
● Are non-trivial
● Hinder portability

Kernel Scheduler

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Kernel-mode challenges

● Kernel doesn't have a good
instrumentation interface

● An alternative would be to modify the kernel

– But kernel modifcations:
● Change the tested software
● Are non-trivial
● Hinder portability

Avoid kernel modifcations

Kernel Scheduler

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

App

Kernel

Hardware

Kernel-level abstractions
Threads and sync. objects

HW-level abstractions
mov, add, jmp, registers, APIC

LD_PRELOAD, ptrace

Our tool
(modifed VMM)

User-mode versus kernel-mode

Scheduler

Existing user-mode
systematic tools

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

App

Kernel

Hardware

Kernel-level abstractions
Threads and sync. objects

HW-level abstractions
mov, add, jmp, registers, APIC

LD_PRELOAD, ptrace

Our tool
(modifed VMM)

User-mode versus kernel-mode

Scheduler

Kernel testing tool

Existing user-mode
systematic tools

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

SKI
Finding kernel concurrency bugs

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Full control of the
kernel interleavings

Systematic

SKI
Finding kernel concurrency bugs

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

+ No modifcations
to the kernel

Practical

Full control of the
kernel interleavings

Systematic

SKI
Finding kernel concurrency bugs

Fast

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

● Challenges testing the kernel code

● SKI's approach

● Implementation

● Evaluation

Finding kernel concurrency bugs

SKI

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

App

Kernel

SKI's approach

SKI

HW-level abstractions
mov, add, jmp, registers, APIC

VM

VMM

Challenges

1. How to control the schedules?

2. Which contexts are schedulable?

3. Which schedules to choose?

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. How to control the kernel schedules?

MOV
ADD
PUSH
MOV
MOV
SUB
JMP

CPU

Thread 1
Thread 2

t

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. How to control the kernel schedules?

● Pin each tested thread to a diferent CPU (thread afnity)

MOV
ADD
PUSH
MOV
MOV
SUB
JMP

MOV
ADD

MOV
PUSH

MOV
SUB
JMP

Pin

CPU CPU 1 CPU 2

Thread 1
Thread 2 Thread 1 Thread 2

t

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. How to control the kernel schedules?

● Pin each tested thread to a diferent CPU (thread afnity)

● Pause and resume CPUs to control schedules

MOV
ADD
PUSH
MOV
MOV
SUB
JMP

MOV
ADD

MOV
PUSH

MOV
SUB
JMP

Pin Control

CPU CPU 1 CPU 2

MOV

ADD
MOV

PUSH
MOV
SUB

JMP

CPU 1 CPU 2

Thread 1
Thread 2 Thread 1 Thread 2 Thread 1 Thread 2

t

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. How to control the kernel schedules?

● Pin each tested thread to a diferent CPU (thread afnity)

● Pause and resume CPUs to control schedules

MOV
ADD
PUSH
MOV
MOV
SUB
JMP

MOV
ADD

MOV
PUSH

MOV
SUB
JMP

Pin Control

CPU CPU 1 CPU 2

MOV

ADD
MOV

PUSH
MOV
SUB

JMP

CPU 1 CPU 2

MOV
ADD
MOV

PUSH
MOV
SUB
JMP

CPU 1 CPU 2

Thread 1
Thread 2 Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2

t +

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. How to control the kernel schedules?

● Pin each tested thread to a diferent CPU (thread afnity)

● Pause and resume CPUs to control schedules

MOV
ADD
PUSH
MOV
MOV
SUB
JMP

MOV
ADD

MOV
PUSH

MOV
SUB
JMP

Pin Control

CPU CPU 1 CPU 2

MOV

ADD
MOV

PUSH
MOV
SUB

JMP

CPU 1 CPU 2

MOV
ADD
MOV

PUSH
MOV
SUB
JMP

CPU 1 CPU 2

Thread 1
Thread 2 Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2

t

Leverage thread afnity and control CPUs

+

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

2. Which contexts are schedulable?

● Execution of some instructions are good hints

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

2. Which contexts are schedulable?

● Execution of some instructions are good hints

MOV
ADD
HALT

MOV
MOV
SUB
PUSH

CPU 1 CPU 2

MOV
MOV

PAUSE
MOV
MOV
SUB
PUSH

CPU 1 CPU 2

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

2. Which contexts are schedulable?

● Execution of some instructions are good hints

● Memory access patterns can also provide hints

MOV
ADD
HALT

MOV
MOV
SUB
PUSH

CPU 1 CPU 2

MOV
MOV

PAUSE
MOV
MOV
SUB
PUSH

CPU 1 CPU 2

JMP
MOV
JMP
MOV
JMP
MOV

MOV

CPU 1 CPU 2

Memory

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

2. Which contexts are schedulable?

● Execution of some instructions are good hints

● Memory access patterns can also provide hints

MOV
ADD
HALT

MOV
MOV
SUB
PUSH

CPU 1 CPU 2

MOV
MOV

PAUSE
MOV
MOV
SUB
PUSH

CPU 1 CPU 2

JMP
MOV
JMP
MOV
JMP
MOV

MOV

CPU 1 CPU 2

Memory

Rely on VMM introspection

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

3. Which schedules to choose?

● PCT: User-mode scheduling algorithm [ASPLOS'10]

– Run the highest priority live threads

– Create schedule diversity

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

3. Which schedules to choose?

● PCT: User-mode scheduling algorithm [ASPLOS'10]

– Run the highest priority live threads

– Create schedule diversity

● Generalize with interrupt support

– Detect arrival / end

– Control dispatch

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

3. Which schedules to choose?

● PCT: User-mode scheduling algorithm [ASPLOS'10]

– Run the highest priority live threads

– Create schedule diversity

● Generalize with interrupt support

– Detect arrival / end

– Control dispatch

● Reduce interleaving space

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

3. Which schedules to choose?

● PCT: User-mode scheduling algorithm [ASPLOS'10]

– Run the highest priority live threads

– Create schedule diversity

● Generalize with interrupt support

– Detect arrival / end

– Control dispatch

● Reduce interleaving space

Generalize user-mode systematic testing algorithms

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

● Challenges testing kernel code

● SKI's approach

● Implementation

● Evaluation

Finding kernel concurrency bugs

SKI

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Implementation

● Implemented SKI by modifying QEMU (VMM)

– No kernel changes required

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Implementation

● Implemented SKI by modifying QEMU (VMM)

– No kernel changes required

● Built a user-mode library (VM)

– Flags start/end of tests and sends results to VMM

– Used library to implement several test-cases

● e.g., fle system tests

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Implementation

● Implemented SKI by modifying QEMU (VMM)

– No kernel changes required

● Built a user-mode library (VM)

– Flags start/end of tests and sends results to VMM

– Used library to implement several test-cases

● e.g., fle system tests

● Implemented several optimizations

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Detecting and diagnosing bugs with SKI

● SKI supports diferent types of bug detectors

– Crash and assertion violations

– Data races

– Semantic bugs (e.g. disk corruption)

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Detecting and diagnosing bugs with SKI

● SKI supports diferent types of bug detectors

– Crash and assertion violations

– Data races

– Semantic bugs (e.g. disk corruption)

● SKI produces detailed execution traces

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

 1. Regression testing

● Challenges testing kernel code

● SKI's approach

● Implementation

● Evaluation

Finding kernel concurrency bugs

SKI

 2. Finding previously unknown bugs

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. Regression testing: setup

● Searched for previously reported bugs

– In kernel bugzilla, mailing lists, git logs

– Well documented reports and diverse set of bugs

● Created SKI test suites for these bugs

– By adapting the stress tests in the bug reports

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. Regression testing: results

Bug Kernel Component Detector

A
Linux
2.6.28

Anonymous
pipes

Crash

B
Linux

3.2
Inotify +
FAT32

Crash

C Linux
3.6.1

Proc + Ext4 Semantic

D FreeBSD
8.0

Sockets Semantic

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. Regression testing: results

Bug Kernel Component Detector

A
Linux
2.6.28

Anonymous
pipes

Crash

B
Linux

3.2
Inotify +
FAT32

Crash

C Linux
3.6.1

Proc + Ext4 Semantic

D FreeBSD
8.0

Sockets Semantic

Diverse properties

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. Regression testing: results

Bug Kernel Component Detector

A
Linux
2.6.28

Anonymous
pipes

Crash

B
Linux

3.2
Inotify +
FAT32

Crash

C Linux
3.6.1

Proc + Ext4 Semantic

D FreeBSD
8.0

Sockets Semantic

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. Regression testing: results

Bug Kernel Component Detector

A
Linux
2.6.28

Anonymous
pipes

Crash

B
Linux

3.2
Inotify +
FAT32

Crash

C Linux
3.6.1

Proc + Ext4 Semantic

D FreeBSD
8.0

Sockets Semantic

SKI is portable

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. Regression testing: results

SKI

Bug Kernel Component Detector Schedules
 Throughput

(sched/h)

A
Linux
2.6.28

Anonymous
pipes

Crash 28 302,000

B
Linux

3.2
Inotify +
FAT32

Crash 53 169,300

C Linux
3.6.1

Proc + Ext4 Semantic 51 218,700

D FreeBSD
8.0

Sockets Semantic 3519 501,400

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. Regression testing: results

SKI

Bug Kernel Component Detector Schedules
 Throughput

(sched/h)

A
Linux
2.6.28

Anonymous
pipes

Crash 28 302,000

B
Linux

3.2
Inotify +
FAT32

Crash 53 169,300

C Linux
3.6.1

Proc + Ext4 Semantic 51 218,700

D FreeBSD
8.0

Sockets Semantic 3519 501,400

SKI can expose
bugs in seconds

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. Regression testing: results

SKI Stress tests

Bug Kernel Component Detector Schedules
 Throughput

(sched/h)
Schedules

A
Linux
2.6.28

Anonymous
pipes

Crash 28 302,000 NA (>24h)

B
Linux

3.2
Inotify +
FAT32

Crash 53 169,300 200,000 (4h)

C Linux
3.6.1

Proc + Ext4 Semantic 51 218,700 800 (1 min)

D FreeBSD
8.0

Sockets Semantic 3519 501,400 NA (>24h)

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

1. Regression testing: results

SKI Stress tests

Bug Kernel Component Detector Schedules
 Throughput

(sched/h)
Schedules

A
Linux
2.6.28

Anonymous
pipes

Crash 28 302,000 NA (>24h)

B
Linux

3.2
Inotify +
FAT32

Crash 53 169,300 200,000 (4h)

C Linux
3.6.1

Proc + Ext4 Semantic 51 218,700 800 (1 min)

D FreeBSD
8.0

Sockets Semantic 3519 501,400 NA (>24h)

Some stress tests
were inefective

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

2. Finding previously unknown bugs

● Created a SKI test suit for fle systems

– Adapted the existing fsstress test suit

– Tested several fle systems

● Bug detectors

– Crashes, warnings, data races, semantic errors (fsck)

● Tested recent versions of Linux

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

2. Finding previously unknown bugs

Bug Linux FS Detector / Failure Status

1 3.11.1 Btrfs Crash (Null-pointer) Fixed

2 3.11.1 Btrfs Crash (Null-pointer) + Warning Fixed

3 3.11.1 Btrfs Warning Fixed

4 3.11.1 Btrfs Fsck (References not found) Reported

5 3.11.1+p Btrfs Crash (Null-pointer) Fixed

6 3.12.2 Btrfs Warning Fixed

7 3.13.5 Logfs Crash (Null-pointer) Reported

8 3.13.5 Logfs Crash (Invalid paging) Reported

9 3.13.5 Jfs Crash (Assertion violation) Reported

10 3.13.5 Ext4 Data race Fixed

11 3.13.5 VFS Data race Reported

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Bug Linux FS Detector / Failure Status

1 3.11.1 Btrfs Crash (Null-pointer) Fixed

2 3.11.1 Btrfs Crash (Null-pointer) + Warning Fixed

3 3.11.1 Btrfs Warning Fixed

4 3.11.1 Btrfs Fsck (References not found) Reported

5 3.11.1+p Btrfs Crash (Null-pointer) Fixed

6 3.12.2 Btrfs Warning Fixed

7 3.13.5 Logfs Crash (Null-pointer) Reported

8 3.13.5 Logfs Crash (Invalid paging) Reported

9 3.13.5 Jfs Crash (Assertion violation) Reported

10 3.13.5 Ext4 Data race Fixed

11 3.13.5 VFS Data race Reported

2. Finding previously unknown bugs

Ofcial Linux releases

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Bug Linux FS Detector / Failure Status

1 3.11.1 Btrfs Crash (Null-pointer) Fixed

2 3.11.1 Btrfs Crash (Null-pointer) + Warning Fixed

3 3.11.1 Btrfs Warning Fixed

4 3.11.1 Btrfs Fsck (References not found) Reported

5 3.11.1+p Btrfs Crash (Null-pointer) Fixed

6 3.12.2 Btrfs Warning Fixed

7 3.13.5 Logfs Crash (Null-pointer) Reported

8 3.13.5 Logfs Crash (Invalid paging) Reported

9 3.13.5 Jfs Crash (Assertion violation) Reported

10 3.13.5 Ext4 Data race Fixed

11 3.13.5 VFS Data race Reported

2. Finding previously unknown bugs

Requested by developers

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Bug Linux FS Detector / Failure Status

1 3.11.1 Btrfs Crash (Null-pointer) Fixed

2 3.11.1 Btrfs Crash (Null-pointer) + Warning Fixed

3 3.11.1 Btrfs Warning Fixed

4 3.11.1 Btrfs Fsck (References not found) Reported

5 3.11.1+p Btrfs Crash (Null-pointer) Fixed

6 3.12.2 Btrfs Warning Fixed

7 3.13.5 Logfs Crash (Null-pointer) Reported

8 3.13.5 Logfs Crash (Invalid paging) Reported

9 3.13.5 Jfs Crash (Assertion violation) Reported

10 3.13.5 Ext4 Data race Fixed

11 3.13.5 VFS Data race Reported

2. Finding previously unknown bugs

Important fle systems

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Bug Linux FS Detector / Failure Status

1 3.11.1 Btrfs Crash (Null-pointer) Fixed

2 3.11.1 Btrfs Crash (Null-pointer) + Warning Fixed

3 3.11.1 Btrfs Warning Fixed

4 3.11.1 Btrfs Fsck (References not found) Reported

5 3.11.1+p Btrfs Crash (Null-pointer) Fixed

6 3.12.2 Btrfs Warning Fixed

7 3.13.5 Logfs Crash (Null-pointer) Reported

8 3.13.5 Logfs Crash (Invalid paging) Reported

9 3.13.5 Jfs Crash (Assertion violation) Reported

10 3.13.5 Ext4 Data race Fixed

11 3.13.5 VFS Data race Reported

2. Finding previously unknown bugs

Data loss

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Current limitations and future work

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Current limitations and future work

● Bugs in kernel scheduler code

– SKI pins tested threads

→ Represent a small set of bugs

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Current limitations and future work

● Bugs in kernel scheduler code

– SKI pins tested threads

→ Represent a small set of bugs

● Bugs in device drivers

– SKI supports a large set of devices but not all

→ Implement SKI with binary instrumentation techniques

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Current limitations and future work

● Bugs in kernel scheduler code

– SKI pins tested threads

→ Represent a small set of bugs

● Bugs in device drivers

– SKI supports a large set of devices but not all

→ Implement SKI with binary instrumentation techniques

● Bugs that depend on weak memory models

– SKI currently implements a strong memory model

→ Generalize SKI to also expose these bugs

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Conclusion

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

Full control of the
kernel interleavings

SKI is
Systematic

Conclusion

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

No modifcations
to the kernel

SKI is
Practical

Full control of the
kernel interleavings

SKI is
Systematic

Conclusion

Fast

Pedro FonsecaSKI: Exposing Kernel Concurrency Bugs

+

Finds and reproduces
real-world kernel
concurrency bugs

SKI is
Efective

No modifcations
to the kernel

SKI is
Practical

Full control of the
kernel interleavings

SKI is
Systematic

Conclusion

Fast

	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page2 (5)
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	Slide 11
	Slide 12
	Slide 13
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page8 (1)
	page8 (2)
	page9 (1)
	page9 (2)
	page9 (3)
	Slide 23
	Slide 24
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page14 (1)
	page14 (2)
	page14 (3)
	page14 (4)
	Slide 38
	page16 (1)
	page16 (2)
	page16 (3)
	page17 (1)
	page17 (2)
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	page34 (1)
	page34 (2)
	page34 (3)
	page34 (4)
	page35 (1)
	page35 (2)
	page35 (3)
	page35 (4)

