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Analysis Pipeline 
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Step 1: Identify segments 
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Challenges 

•  Previous methods derive a causal model 
–  Instrument scheduler and communication 
– Build model through human knowledge 
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Need method that works at scale with 
heterogeneous components 



Opportunities 

•  Component-level logging is ubiquitous 

•  Handle a large number of requests 
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Tremendous detail about a request’s execution 

Coverage of a large range of behaviors 



The Mystery Machine 

1) Infer causal model from large corpus of traces 
–  Identify segments 
–  Hypothesize all possible causal relationships 
–  Reject hypotheses with observed counterexamples 

2) Analysis 
–  Critical path, slack, anomaly detection, what-if 
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Step 1: Identify segments 
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Define a minimal schema 
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Define a minimal schema 
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Segment 1 Segment 2 

Task 

Event Event Event 

Request identifier 
Machine identifier 
Timestamp 
Task 
Event  

Aggregate existing logs using minimal schema 



Step 2: Infer causal model 
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Types of causal relationships 
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Producing causal model 
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Producing causal model 
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Step 3: Analyze individual requests 

Michael Chow 23 



Critical path using causal model 
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Step 4: Aggregate results 
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Inaccuracies of Naïve Aggregation 
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Inaccuracies of Naïve Aggregation 
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Need a causal model to correctly understand latency 



High variance in critical path 

•  Breakdown in critical path shifts drastically 
–  Server, network, or client can dominate latency 
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Server Network Client 
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High variance in critical path 

•  Breakdown in critical path shifts drastically 
–  Server, network, or client can dominate latency 
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Server Network Client 

Percent of critical path Percent of critical path Percent of critical path 

cd
f 

20% of requests, server 
contributes 50% or more 

of latency 



Diverse clients and networks 
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Diverse clients and networks 
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Differentiated service 
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Deliver data when needed and reduce average response time 

No slack in server generation time 
Produce data faster 

Decrease end-to-end latency 

Slack in server generation time 
Produce data slower 

End-to-end latency stays same 



Additional analysis techniques 

•  Slack analysis 

•  What-if analysis 
– Use natural variation in large data set 
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What-if questions 

•  Does server generation time affect end-to-
end latency? 

•  Can we predict which connections exhibit 
server slack? 
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Server slack analysis 
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Server slack analysis 
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Slack < 25ms Slack > 2.5s 

End-to-end latency 
increases as server 

generation time increases 

Server generation 
time has little effect 

on end-to-end latency 



Predicting server slack 

•  Predict slack at the receipt of a request 
•  Past slack is representative of future slack 
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Conclusion 
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Questions 
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