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Internet services are complex
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Scale and heterogeneity make Internet services complex
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Analysis Pipeline
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Step 1: Identify segments
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Step 2: Infer causal model
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Step 3: Analyze individual requests
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Step 4: Aggregate results
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Challenges

 Previous methods derive a causal model
— Instrument scheduler and communication
— Build model through human knowledge

Need method that works at scale with
heterogeneous components
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Opportunities

« Component-level logging is ubiquitous

Tremendous detail about a request’'s execution

 Handle a large number of requests

Coverage of a large range of behaviors
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The Mystery Machine

1) Infer causal model from large corpus of traces
— ldentify segments
— Hypothesize all possible causal relationships
— Reject hypotheses with observed counterexamples
2) Analysis

— Critical path, slack, anomaly detection, what-if

Michael Chow facebook BEK



Step 1: Identify segments
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Define a minimal schema

Task

| o sememt | Sewmemz

Event Event Event
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Define a minimal schema

Event Event Event
YRequest identifier )
Machine identifier
Timestamp
Task
\Event )

Aggregate existing logs using minimal schema
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Step 2: Infer causal model
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Types of causal relationships

Relationship Counterexample
Happens-Before

A B B —> A

Mutual Exclusion

A — B

OR

B —> A

Pipeline
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Producing causal mode|

Causal Model



Producing causal mode|

Causal Model
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Producing causal mode|
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Producing causal mode|
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Step 3: Analyze individual requests
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Critical path using causal model
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Critical path using causal model
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Critical path using causal model
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Step 4: Aggregate results
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Inaccuracies of Naive Aggregation
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Inaccuracies of Naive Aggregation
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Need a causal model to correctly understand latency
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cdf

High variance In critical path
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« Breakdown in critical path shifts drastically
— Server, network, or client can dominate latency
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High variance in critical path

Server Network Client
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« Breakdown in critical path shifts drastically
— Server, network, or client can dominate latency
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High variance in critical path

Server Network Client
1.0r
= 20% of requests, server
. 0 0.8t
0.8 contributes 50% or more
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« Breakdown in critical path shifts drastically
— Server, network, or client can dominate latency

Michael Chow facebook. BEE



Diverse clients and networks

Network Client

Server Network Client
w
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Diverse clients and networks

Server Network Client

Server Network Client

Server Network Client
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Diverse clients and networks

Server Network Client
w N

Server Network Client
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@ Server Network Client
- A

Michael Chow facebook. BEE



Differentiated service

Slack in server generation time  No slack in server generation time
Produce data slower Produce data faster
End-to-end latency stays same Decrease end-to-end latency

Deliver data when needed and reduce average response time
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Additional analysis techniques

« Slack analysis

* What-if analysis
— Use natural variation in large data set
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What-if questions

* Does server generation time affect end-to-
end latency?

« Can we predict which connections exhibit
server slack?
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Server slack analysis

Slack < 25ms

End to End Latency (ms)
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Server slack analysis

Slack < 25ms

End-to-end latency
increases as server
generation time increases

End to End Latency (ms)

Server generation
time has little effect
on end-to-end latency
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Predicting server slack

* Predict slack at the receipt of a request
 Past slack is representative of future slack
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Predicting server slack

* Predict slack at the receipt of a request
 Past slack is representative of future slack

Classifies
83% of
requests
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Conclusion
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Questions
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