|[dentitying Information Disclosure
N Web Applications with
Retroactive Auditing

Haogang Chen, Taesoo Kim, Xi Wang
Nickolal Zeldovich, and M. Frans Kaashoek

MIT CSAIL

Data breach: an enduring problem

New Web Vulnerabilities Expose eBay User Data
Again

Security researchers have warned that eBay user
accounts could still be at risk, just days after the
firm was forced to admit a major data breach,
after spotting new critical web vulnerabilities.

The first was discovered by Stockton-on-Tees
based researcher Jordan Jones, who took to Twitter
S to reveal he had managed to upload shellcode to
New Web Vulnerabilities ¢pay which could give him remote control of the

Expose eBay User Data targeted server.
Again

The online giant said in a message shared by Jones
on Twitter that it has since resolved the problem
and promised to add his name to its
“acknowledgement page”.

Data breach: an enduring problem

27TMAY 2014 |

New Web Vulnerabilities Expose eBav User Data

Af

The sec

utmost 1
of that 11

On Aug
August .
our findi
an overs
campus
course 11

JPMorgan Says Data Breach Hit
26 Million Households

The Huffington Post | By Mark Gongloff W &

Posted: 10/02/2014 5:17 pm EDT Updated: 10/02/2014 6:59 pm ED1

A cyber attack at America's biggest bank this summer affected more than half of all
U.S. households -- far, far more than previously estimated, and the latest in a string of
massive, unnerving data breaches.

The attack at JPMorgan Chase affected the data of 76 million households and 7
million businesses, the bank said in a regulatory filing on Thursday.

That impact was far bigger than earlier estimates that about 1 million customers had
been affected, the New York Times noted. It represents more than half of the roughly
115 million households in America.

{TION
FULLY

ty, is of
of some

rred on
ased on
°r using
rticular
earning
tigated.

What to do about it?

What to do about it?

 Before data breach: prevention techniques
* privilege separation
e encryption

e Information flow control

What to do about it?

 Before data breach: prevention techniques
* privilege separation
e encryption
e information flow control

e After a potential data breach: damage control

Observation:
Damage control is costly

* Notity the victims

e Data Breach Notification Laws (40/50 states)

Observation:
Damage control Is costlv

11:53 AM 92% N>

ANNOUNCEMENT LOG OFF

* Notify the victims

the cyber
extensive

® NAtA DerAaAa~lh NlA+iFiAA+t AR | Avaia~ (7

: : HASE
“...... However, your contact information =« mereEnoevdence

numbers, passwords, user IDs, date of

—_— name, addI'GSS, phone number and birth or Social Security number were

compromised during this attack.

email addreSS — Was Compromised.” e However, your contact information -

name, address, phone number and
email address - was compromised.

t your account

A\ /

Your money at JPMorgan Chase is safe:

e Unlike recent attacks on retailers, we
have seen no unusual fraud activity
related to this incident.

e Importantly, you are not liable for

memss sevmmesbhlh avicad bvcmmrantliae a-

Observation:
Damage control is costly

* Notity the victims

e Data Breach Notification Laws (40/50 states)

e Pay for credit monitoring & fraud protection

Observation:
(B UNIVERSITY OF
5

MARYLAND

ABOUT ACADEMICS ADMISSIONS RESEARCH INNOVATION CA

UMD Data Breach

The deadline to enroll for 5 years of free credit monitoring through Experian expired on May 31, 2014.

Background

On February 18, 2014, the University of Maryland was the victim of a sophisticated computer security attack
university regrets this breach of our computer and data systems.

* e.9., University of Maryland pledges to offer its
309,079 victims for 5-year of credit monitoring

Opportunity:
Some data might not be leaked

Opportunity:
Some data might not be leaked

* [he vulnerablility might not have been exploited yet

Opportunity:
Some data might not be leaked

* [he vulnerablility might not have been exploited yet

* Attackers might not steal all data that they can

Opportunity:
Some data might not be leaked

* [he vulnerablility might not have been exploited yet

* Attackers might not steal all data that they can

 Goal: precisely identity breached data items

Opportunity:
Some data might not be leaked

The vulnerability might not have been exploited yet

Attackers might not steal all data that they can

Goal: precisely identify breached data items

Target damage control at real victims only

State of the art

* Log all accesses to sensitive data

e Inspect logs after an intrusion

State of the art

* Log all accesses to sensitive data
e Inspect logs after an intrusion
 Problems

e Need to know what is sensitive data beforehand

State of the art

* Log all accesses to sensitive data
e Inspect logs after an intrusion
* Problems
* Need to know what is sensitive data beforehand

 Hard to tell legal v.s. illegal accesses

State of the art

* Log all accesses to sensitive data
e Inspect logs after an intrusion
* Problems
* Need to know what is sensitive data beforehand

 Hard to tell legal v.s. illegal accesses

* Takes a long time:
e.g., University of Maryland: one month to inspect

309.079 breached records

Solution: Rail

* Goal: precisely identify previously breached data
after a vulnerabillity is fixed

Solution: Rail

* Goal: precisely identify previously breached data
after a vulnerabillity is fixed

Web

Applicati%

Solution: Rail

* Goal: precisely identify previously breached data
after a vulnerability is fixed

Solution: Rail

* Goal: precisely identify previously breached data
after a vulnerabillity is fixed

N
Web
Application
= 0

fix ACL

Solution: Rail

* Goal: precisely identify previously breached data
after a vulnerabillity is fixed

replay

Pumpkin

fix ACL

Solution: Rail

* Goal: precisely identify previously breached data
after a vulnerabillity is fixed

replay

breach report S

8=

Leaked data for session RuZw9cCaDMiPdsy
Login: evil_student @ 4/24/2014 3:14:15
IP: 192.168.0.10
> answers/fNKXudhNDF7 fields: answer
- answers/jxT5w7jRIpm fields: answer

Application

L — E—

fix ACL

Solution: Rail

* Goal: precisely identify previously breached data
after a vulnerabillity is fixed

replay

breach report S

8=

Leaked data for session RuZw9cCaDMiEdsy~
Login: evil_student @ 4/24/2014 3:14:15
IP: 192.168.0.10
> answers/fNKXudhNDF7 fields: answer
- answers/jxT5w7jRIpm fields: answer

Application

fix ACL

session info data item fields
(IP. user, time)

Challenge

e State during replay can diverge from the original execution

Challenge

e State during replay can diverge from the original execution

* Prior systems use record and replay for integrity

Challenge

e State during replay can diverge from the original execution

* Prior systems use record and replay for integrity

Record

—_—

Replay \

Retro [OSDI ’10]
Warp [SOSP '11]

Challenge

e State during replay can diverge from the original execution

* Prior systems use record and replay for integrity

Record

ﬁ f
Replay \
Retro [OSDI ’10] Rad [APSys ’'11]

Warp [SOSP '11] Poirot [OSDI '12]

Challenge

e State during replay can diverge from the original execution

* Prior systems use record and replay for integrity

Record

ﬁ #
Replay \

Retro [OSDI| "10] Rad [APSys ’'11]

Warp [SOSP '11] Poirot [OSDI '12]

* Rail focuses on confidentiality

Challenge

State during replay can diverge from the original execution

Prior systems use record and replay for integrity

Record

— —_— —r—rx

Retro [OSDI "10] Rad [APSys '11] Rail
Warp [SOSP '11] Poirot [OSDI '12]

Rail focuses on confidentiality

For precision, Rail must match up state and minimize
state divergence between the two executions

Contribution

 Record and replay scheme for identifying data
disclosures

* APIs for application developers
* Context matching to improve precision
* Prototype based on Meteor web framework

* Result: few changes to applications, precise, fast

FOcus and assumptions

- Focus: web applications

* Our prototype is based on, but not limited to, Meteor

FOcus and assumptions

- Focus: web applications

* Our prototype is based on, but not limited to, Meteor
- Assumptions
* Jrusts the software stack below the web application
» TCB: web framework, runtime, DBMS, OS, etc.
 Requests do not change during replay, except tor fixes

 Requests are serializable, etc.

Basic approach

 Record and replay the web application

o Compare the outputs of two executions

Basic approach

 Record and replay the web application

o Compare the outputs of two executions

web app
+ Rail API

Basic approach

 Record and replay the web application

o Compare the outputs of two executions

web app
request — + Rail API —> Output
record

log

Basic approach

 Record and replay the web application

o Compare the outputs of two executions

request —» _I_ngifigl —> Oulput
record
log
web app

*
*’Is

+ patch o7y
he! T
v:k****

Basic approach

 Record and replay the web application

o Compare the outputs of two executions

request —» _I_ng"a XEI —> Oulput
record
[¢)
J replay
web app

+ patch "%, — oulput’

Aa? %
* *y:’“
‘L**

Basic approach

 Record and replay the web application

o Compare the outputs of two executions

request —» _I_ng"a XEI —> Oulput
record
[¢) diff
J replay A
web app

+ patch "%, — oulput’

A %
* *y:’“
%**

lTechnical challenges

request

log

web app

/ + Rall AP@

record

—*play 0

web app

output

N

diff A |

5

4 patch i~ output’

lTechnical challenges

 Compare & identify data items at object level

web app

+ Rall AP@
/

record

\repAlay O

web app ,
+ patch s~ > oulpul

request

lTechnical challenges

 Compare & identify data items at object level

Non-deterministic inputs
(date, random)

/

web app

 Make replay deterministic

request + Rail APE output
/ record \ N
log diff A |
-%)Alay
web app f

4+ patch i~ oufput’

L

lTechnical challenges

 Compare & identify data items at object level
 Make replay deterministic

e Selective replay
for performance

e ERfD output

/ + Rall API@ \

record

D) S

web app ,
+ patch s~ > oulpul

request

lTechnical challenges

Compare & identify data items at object level
Make replay deterministic

Selective replay

web app
for performance equest + Reil AP) R
record O \
Ce | iff A
Minimize code changes —l\replav o i |
In the application web app /T

+ patch s —> output’

Design: action history graph (AHG)

« AHG [OSDI] ’'10] tracks dependencies among actions and
objects

Design: action history graph (AHG)

« AHG [OSDI] ’'10] tracks dependencies among actions and
objects

_ request/
- Actions timer

\
\

e [riggered by external events

Design: action history graph (AHG)

« AHG [OSDI] ’'10] tracks dependencies among actions and
objects
request/

- Actions timer
* Triggered by external events \

\
» All application code
IS executed In the

context of an action

Design: action history graph (AHG)

« AHG [OSDI] ’'10] tracks dependencies among actions and
objects

_ request/
- Actions timer elojlusere j

* Triggered by external events \ [code]

\
e All application code
IS executed in the [db/log j

context of an action [args }

» Rail connects actions anad V'eW/<S'd>j
objects as the code runs

write read trigger

Design: action history graph (AHG)

« AHG [OSDI] ’'10] tracks dependencies among actions and
objects

_ request/
- Actions timer clojtisElie j

* Triggered by external events \ [code]

\
e All application code
IS executed in the [db/log j

context of an action [args }

» Rail connects actions anad V'eW/<S'd>j
objects as the code runs

_ _ , write read trigger
* Rail stores AHG in a persistent log ~——— e > — >

Selective replay using AHG

* Rall replays each action
sequentially in the time order

* Replays an action if
any of its inputs or
outputs are changed

Selective replay using AHG

* Rall replays each action
sequentially in the time order

* Replays an action if

any of its inputs or
outputs are changed [code J

Selective replay using AHG

* Replays an action if >
any of its inputs or [d }
code "% [T
outputs are changed
#4

* Rall replays each action
sequentially in the time order .- @

Selective replay using AHG

* Rall replays each action
sequentially in the time order .-

* Replays an action if
any of its inputs or
outputs are changed [

login/sid db/log

Selective replay using AHG

* Rall replays each action
sequentially in the time order .-

* Replays an action if
any of its inputs or
outputs are changed [

[login/sid j db/log

Selective replay using AHG

* Rall replays each action @
sequentially in the time order

o*
L 2
2
.
 J
4
*
“
*

> db/users
any of its inputs or o
[code+* ﬁ

* Replays an action if
outputs are changed

action
db/log

£
*

[login/sid]

Selective replay using AHG

* Rall replays each action
sequentially in the time order .
. . ,’c . db/users
* Replays an action if ’ :
any of its inputs or [d D
outputs are changed °o%K)

* Replay is guaranteed

to terminate
(IoghﬂSkﬂ]

£
*

db/log

action
#8
v

* Never runs actions earlier
than current replaying action

Selective replay using Object AP|

* Rall must intercept all accesses to global objects

* e.g., Inputs, outputs, database items,
session states, ...

Selective replay using Object AP

* Rall must intercept all accesses to global objects

* e.g., Inputs, outputs, database items,
session states, ...

 Reasons
e to track dependency between actions

* to make continuous checkpoints of object states

Selective replay using Object AP

* Developer must wrap all global objects in the app
using Rail's object API

Selective replay using Object AP

* Developer must wrap all global objects in the app
using Rail's object API

Selective replay using Object AP

* Developer must wrap all global objects in the app
using Rail's object API

* (Global objects are quite standard in all web apps.

Selective replay using Object AP

* Developer must wrap all global objects in the app
using Rail's object API

AAO
&

* (Global objects are quite standard in all web apps.

 Most wrappers can be done once Iin the framework

Example: homework submission

// Server side code
var Homeworks = App.getDBCollection(‘hws’);
var Answers = App.getDBCollection(“answers’);

App.method(‘submit’, function (hw_id, answer) {
var uid = App.getSessionUserId();
var hw = Homework.findOne({ _id: hw_id});

if (luid || !'hw || hw.dueDate < (new Date))
throw new Error(’Submission failed’);
Answers.insert({ _id: Math.random(),
hw: hw _id, user: uid, answer: answer});

})s

Example: homework submission

// Server side code
var Homeworks = App.getDBCollection(‘hws’);
var Answers = App.getDBCollection(“answers’);

App.method(‘submit’, function (hw_id, answer) {
var uid = App.getSessionUserId();
var hw = Homework.findOne({ _id: hw_id});

throw new Error(’Submisese : o
Answers.insert({ _id:{(Math.random(),

hw: hw_id, user: uid, amswes="answer});

})s

if (luid || 'hw || hw. dueDate

Example: homework submission

// Server side code using Rail API
var Homeworks = App.getDBCollection(‘hws’);
var Answers = App.getDBCollection(“answers’);

App.method(‘submit’, function (hw_id, answer) {
var uid = App.getSessionUserId();
var hw = Homework.findOne({ _id: hw_id});
var ctx = Rail.inputContext(hw_id, uid);
if (luid || 'hw || hw.dueDate < ctx.date())
throw new Error(’Submission failed’);
Answers.insert({ id: ctx.random(),
hw: hw _id, user: uid, answer: answer});

})s

r *

Example: homework submission

// Server side code using Rail API
var Homeworks = App.getDBCollection(‘hws’);
var Answers = App.getDBCollection(“answers’);

App.method(‘submit’, function (hw_id, answer) {
var uid = App.getSessionUserId();
var hw = Homework.findOne({ id: hw id});
var ctx = Rail.inputContext(hw _id, uid);
if (luid Lhw hw.dueDate < ctx.date())
throw new Error(’Submission failed’);
Answers.insert({ id: ctx.random(),
hw: hw _id, user: uid, answer: answer});

})s

Example: homework submission

// Server side code using Rail API
var Homeworks = App.getDBCollection(‘hws’);
var Answers = App.getDBCollection(“answers’);

App.method(“submit’, function (hw_id, answer) {
var uid = App.getSessionUserId();
var hw = Homework.findOne({ id: hw id});
var ctx = Rail.inputContext(hw id, uid);
if (luid Lhw w.dueDate < ctx.date())

“call”
action

hw: hw_id, user: uid, answers:

})s

INnput
context
T — T ————

Example: homework submission

handler
,[] table
code

// Server side code using
var Homeworks

var Answers = . ign(“answers’);
: : action
App.method(“submit’, function (hw_1d,‘g;;;;;) {
argument

var uid = App.getSessionUserId()$—
var hw = Homeworl,findOne({ id: hw id}); .
— : : session
var ctx = Rail.i text(hw_id, uid);
)

: : state
if (luid lhw < ctx.date()
ission fail :

throw new Error(’Su

Answers.insert({ _id: ctx: —o database
i (hws)
hw: hw_1i
1) [. j
INput
- context database
(answers)

Uniform Object AP

* Rail provides a uniform API for different types of objects

» Rail takes care of dependency tracking and
checkpointing

(™ 0ai
RailObject ogin
argument + getValue() // accessor
+ add(..,..) // mutators [databaSe]
context '
- rollback(ts)
code - equiv(ts) [. j
oo view
\- Y

Uniform Object AP

* Rail provides a uniform API for different types of objects

» Rail takes care of dependency tracking and

checkpointing

argument
context

code

RailObject

getValue() // accessor
add(...,..) // mutators

- rollback(ts)
- equiv(ts)

iogn)

[database]

[view] outputs :

Tracking data items in output

Tracking data items in output

« Rail maintains a view object for every session

e tracks all data items sent to the client

Tracking data items in output

« Rail maintains a view object for every session
e tracks all data items sent to the client
* Jo do output book-keeping, one adds objects to the view

* €.J., view.add(“db/users/admin”, {“name”, “email”});

e change the template rendering system

Tracking data items in output

« Rail maintains a view object for every session
e tracks all data items sent to the client
* Jo do output book-keeping, one adds objects to the view

* €.J., view.add(“db/users/admin”, {“name”, “email”});

e change the template rendering system

 During replay, Rail reruns actions and re-compute the
view objects for every session

e If old view — new view + @& = Breach!

Replay with non-deterministic Inputs

Goal: minimize state divergence

Replay with non-deterministic Inputs

App.method(‘populate_admins’, function () {
var admins = [‘Alice’, ‘Mallory’, ‘Bob’];

for (var i = @; i < admins.length; ++i) {
var pwd =(Math.random();
Users.insert({name: admins[i], passwd: pwd});

}
1)

Replay with non-deterministic Inputs

 How to handle randomness during replay?

App.method(‘populate admins’, function () {

+ var admins = [‘Alice’, ‘Bob’];
for (var i = 0; j admins.length; ++i) {
var pwd =
Users.insert({name: admins[i], passwd: pwd});

Replay with non-deterministic Inputs

 How to handle randomness during replay?

e Strawman 1: return a new random numberx

App.method(‘populate_admins’, function () {
+ var admins [‘Alice’, ‘Bob’];
for (var i = @; i < admins.length; ++i) {

var pwd =(Math.random();

Users.insert({name: admins[i], passwd: pwd});

Replay with non-deterministic Inputs

 How to handle randomness during replay?
e Strawman 1: return a new random numberx

+ Strawman 2: log and return random numbers in order ¢

App.method(‘populate_admins’, function () {
+ var admins [‘Alice’, ‘Bob’];
for (var i = @; i < admins.length; ++i) {

var pwd =(Math.random();

Users.insert({name: admins[i], passwd: pwd});

Stabilize non-deterministic inputs
with context identifiers

* Jo avoid false report, Rail must reconcile state divergence
of two executions w.r.t. non-deterministic inputs

Stabilize non-deterministic inputs
with context identitiers

* Jo avoid false report, Rail must reconcile state divergence
of two executions w.r.t. non-deterministic inputs

e Solution: use input context object to access non-
deterministic input

Stabilize non-deterministic inputs
with context identitiers

* Jo avoid false report, Rail must reconcile state divergence
of two executions w.r.t. non-deterministic inputs

e Solution: use input context object to access non-

deterministic input

App.method(‘populate_admins’, function () {
var admins = [‘Alice’, ‘Mallory’, ‘Bob’];
for (var 1 = @; i < admins.length; ++i) {

+ var pwd = Rail.inputContext(
+ ‘populate’, admins[i]).random();
Users.insert({name: admins[i],
passwd: pwd});

1)

Stabilize non-deterministic inputs
with context identifiers

* Jo avoid false report, Rail must reconcile state divergence
of two executions w.r.t. non-deterministic inputs

e Solution: use input context object to access non-

deterministic input

» developer supplies
a stable context ID

e during replay:
same context |ID =»
return same value

App.method(‘populate_admins’, function () {
var admins = [‘Alice’, ‘Mallory’, ‘Bob’];
for (var 1 = @; i < admins.length; ++i) {

+ var pwd = Rail,inputContext(

+ ‘populate’, admins[i]D.random();

Users.inser name: admins[i],
passwd: pwd});

Stabilize non-deterministic inputs
with context identifiers

* Jo avoid false report, Rail must reconcile state divergence
of two executions w.r.t. non-deterministic inputs

e Solution: use input context object to access non-

deterministic input

» developer supplies
a stable context ID

e during replay:
same context |ID =»
return same value

App.method(‘populate_admins’, function () {
var admins = [‘Alice’, ‘Mallory’, ‘Bob’];
for (var 1™Q; i < admins.length; ++i) {

+ var pwd = RailNinputContext(

+ ‘populate’, admins[i]D.random();

Users.inser name: admins[i],
passwd: pwd});

Other issues

How to port other web frameworks to support Rail?
* e.g., Django, Ruby, etc.
How to choose context identifiers?

What it developers misuse Rail API?

Evaluation

Benchmarks

Application Description

Submit homework grading

EndoApp medical survey

social news
(open source)

Telescope

Benchmarks

Application Description Attack workload

ACL error: administrator erroneously

Submit homework grading granting “staff’ privilege to a student

Stolen password: attacker creating
EndoApp medical survey a malicious root account using a
surgeon’s weak password

Code bugs: permission checks
based on client-supplied user |ID
—— a real bug in commit history

social news
(open source)

Telescope

Porting applications to Rail Is easy

LOC in JavaScript (only server-side code is changed)

Application Changed Server Client

Submit

EndoApp

Telescope

* Most of the changes are related to non-deterministic inputs

Porting applications to Rail Is easy

LOC in JavaScript (only server-side code is changed)

Application Changed Server Client

Submit

EndoApp

Telescope

* Most of the changes are related to non-deterministic inputs

* Framework wrappers (422 lines in Meteor) offload most
burdens from the application developer

Rall Is more precise than
access log based approaches

of data items (run with benign workloads in the background)

Workload Accessed Reported Missed False

ACL error 193

(Submit)
Stolen password
(EndoApp) 3,521 197 0 1
Code bugs 23 10 0 0

(Telescope)

Rall Is more precise than
access log based approaches

of data items (run with benign workloads in the background)

Workload Accessed Reported Missed False

ACL error
(Submit) 193
Stolen password

(EndoApp) 3,521 197 0

Code bugs
(Telescope)

23 10 0 0

The malicious account created by the attacker
(not a “breach”, but related to the attack)

Rall replays only relevant requests

B Replayed Total
ACL error °
(Submit) 0.1%
Stolen password °
Code bugs 10.7%

(Telescope)

0% 25% 50% 75% 100%
Replayed request (%)

Rall replays only relevant requests

B Replayed Total

ACL error 0.1%

(Submit)
Stolen password °
Code bugs 10.7%

(Telescope)

0% 25% 50% 75% 100%
Replayed request (%)

- Rail replays only a small fraction of original
requests that are related to the attack

Rall replays only relevant requests

B Replayed Total

ACL error |
(Submit) 0.1%

Stolen password 319,
(EndoApp) B ° Changed code is on the critical
' path of all login requests

Code bugs
(Telescope)

0% 25% 50% 75% 100%
Replayed request (%)

- Rail replays only a small fraction of original
requests that are related to the attack

Rall replays only relevant requests

B Replayed Total M Replay Recording
ACL error ! o ! ! 3.2
(Submit) el 664
Stolen password 3 19 | 10.6
(EndoApp) e 640
Code bugs ° 61 2
(Telescope) 10.7% r | | 603
0% 20% 50% 75% 100% 0 200 400 600 300
Replayed request (%) Time (seconds)

- Rail replays only a small fraction of original - Replay time is proportional to
requests that are related to the attack the number of replayed requests

Rail’'s recording overhead

IS moderate
- Performance)
Throughput Overhead for “Submit
e 5% for an under- 50 ’
loaded server %\ I
(< 90% CPU utilization) & 42 :
O i
= 34
e 22% for an over- =
o |
loaded server £ 26 . o i
D) |
g 13 . Stock
— 5%8 22, 1

10 —_t
16 32 48 64 80 96 112 128

Number of clients

Rail’'s recording overhead

'S moderate
- Performance)
Throughput Overhead for “Submit
5% for an under- 50 -
loaded server %\ L
(< 90% CPU utilization) & 42 :
o 0
= 34
o 22% for an over- =
o i
loaded server £ 26 . o i
3 ! Stock
. Storage £ 18 '
— 5%" 22%"
« ~ 0.5KB /request 10 —
' au 16 32 48 64 80 96 112 128
« or 500GB / year for Number of clients

a full-loaded server

Related Work

* Record and replay
 Recovery. Retro [OSDI '10]; Warp [SOSP '11]
 Auditing. Rad [APSys '11]; Poirot [OSDI '12]

* Detecting data breaches
 Access log: Keypad [EuroSys ’'11]; Pasture [OSDI '12]

* Information flow. TightLip [NSDI '07]; TaintDroid [OSDI '10]

Conclusion

Rail can precisely identity breached data items
after a disclosure in web applications

Provides developers with APls that help to identity
data items, track dependencies, and match up
states

Requires tew changes to applications

Precise, efficient, and practical

Questions?

