Pelican: A building block for exascale cold
data storage

Shobana Balakrishnan, Richard Black, Austin Donnelly, Paul
England, Adam Glass, Dave Harper, Sergey Legtchenko, Aaron
Ogus, Eric Peterson, Antony Rowstron

Microsoft Research

Access pattern

Write once,

Background: cold data in the cloud

* Cold data: “written once — read rarely” access pattern

* Large fraction of stored data

RW

occasionally

»

active

, 55555

SSD
15K

RPM
HDD

!
|
\

Read never

1 ms 10 ms sec min hrs

Latency requirements

Hot tier N
* Provisioned for peak
* High throughput

* Low latency

\’ High cost Y,

Archive tier
* Low cost
* High latency (hours)

Access pattern

Write once,

Background: cold data in the cloud

* Cold data: “written once — read rarely” access pattern

* Large fraction of stored data

RW

occasionally

active

»

, 55555

Read never

SSD
15K

RPM
HDD

Pelican vs. Tape:

 Better performance

* Similar cost

_______ r

Pelican

1 ms 10 ms sec

=

Latency requirements

in

hrs

Hot tier)
* Provisioned for peak
* High throughput

* Low latency

\’ High cost Y,

(Cold tier:)
* High density

* Low hardware cost

* Low operating cost

* Latency lower than

_ tape -/

Right-provisioning

* Provision resources just for the cold data workload:
—Disks:

* Archival and SMR instead of commodity

—Pow.er Enough for bandwidth required by workload
—Cooling instead of

—Bandwidth for all disks spinning

—Servers:

* Enough for data management instead of 1 server/ 40 disks

o Benefits of removing unnecessary resources:
—High density of storage
— Low hardware cost

_ —Low operating cost (capped performance))

Pelican: rack-scale appliance for cold data

Converged design:

— Power, cooling, mechanical, storage & software co-designed

Right-provisioned for cold data workload:

— Resources for just workload requirements

At most 8% disks spun up
2 servers
No Top of Rack switch

— 4x 10Gbps uplinks from the servers

1,152 disks in 52U:|22 disks/U|
5+ PB of raw storage

Other disk-based storage:
®» Up to 15/U

Pelican rack prototype

5

Pelican: rack-scale appliance for cold data

Converged design:

— Power, cooling, mechanical, storage & software co-designed

Right-provisioned for cold data workload:

— Resources for just workload requirements

At most 8% disksspunup 00000 R it

2 servers N I

N

* Total cost of ownership comparable to tape :

1' * Lower latency than tape

SC Challenging resource limitations managed in

software

PETICAan rack prototype

6

Pelican storage stack: handling right-provisioning

* Co-designed with hardware

e Constraints over sets of active disks:

store API Placement

—Hard: power, cooling, failure domains BEE B
— Soft: bandwidth, vibration In this talk W
___userspace
kernel s to disks
* Software challenges: SR

— |T)ata placement: concurrency of requests NEiiiEtiiasiiais)
— |10 scheduling: minimize spin ups, fairness

— Recovery: minimize window of vulnerability

Impact of right provisioning on resources

Systems provisioned for peak performance:
— Any disk can be active at any time
Right-provisioned system:

— Disk part of a domain for each resource

— Domain supplies limited resources

— Disk active if enough resources in all its domains

Rack: 3D array of disks

Pelican domains:

— power, cooling, vibration, bandwidth

Resource limitations:

| I
Cooling
domain of d

— 2 active out of 16 per power domain

— 1 active out of 12 per cooling domain

— 1 active out of 2 per vibration domain L

Power
domain of d

HEEEEE

Data placement: maximizing request
concurrency

* Blob erasure-encoded on a set of concurrently active disks
* |In fuIIy provisioned systems: First approach: random placement

— Any two sets can be active

— No impact of placement on concurrency

* In right-provisioned systems: SEEEESEEEEEE N
o _ NEENENEEENEE| NN
— Sets can conflict in resource requirements gumpupuEn EEi =
— Conflicting cannot be concurrently active Y| BHHEHEHHHSHHERIH-
|

— Challenge: form sets that minimize P_
Conflict

Conflict

Disks of blob 1
O Disks of blob 2

Rack: 3D array of disks

Data placement: maximizing request
concurrency

* Blob erasure-encoded on a set of concurrently active disks
* |In fuIIy provisioned systems: First approach: random placement

— Any two sets can be active

— No impact of placement on concurre

Random placement:
Storing blobs on n disks,
IDConf/ict’ O(nz)

* In right-provisioned systems:

— Sets can conflict in resource requirem

— Conflicting cannot be concurrently active 1 EHHHH
H

— Challenge: form sets that minimize P_
Conflict

Conflict

Disks of blob 1
O Disks of blob 2

Rack: 3D array of disks

10

Pelican data placement

Intuition: concentrate all conflicts over a few sets of disks

Statically partition disks in groups in which disks can be
concurrently active
Property:

— Either fully conflicting

— Or fully independent

Blob is stored in one group

- PConflict_> O(n)

Groups encapsulate constraints:
— Unit of 10 scheduling Schematic side-view of the rack

— No constraint management at runtime

11

Pelican data placement

Intuition: concentrate all conflicts over a few sets of disks
Statically partition disks in groups in which disks can be

concurrently active

Property:

— Either fully conflicting

— Or fully independent
Blob is stored in one group

- I:)Conflict_> O(n)

Groups encapsulate constraints:
— Unit of 10 scheduling Schematic side-view of the rack

— No constraint management at runtime

12

Pelican data placement

Intuition: concentrate all conflicts over a few sets of disks

Statically partition disks in groups in which disks can be

concurrently active

Property:

— Either fully conflicting

— Or fully independent

Blob is stored in one group

—> O(n)

- I:)Conflict

I Class: 12 fully-conflicting

groups

Groups encapsulate constraints:
— Unit of 10 scheduling
— No constraint management at runtime

Schematic side-view of the rack

Pelican data placement

Intuition: concentrate all conflicts over a few sets of disks

Statically partition disks in groups in which disks can be

concurrently active

Property:

— Either fully conflicting
— Or fully independent

Blob is stored in one group

48 groups of 24 disks
— 4 classes of 12 fully-conflicting groups
— Class is independent: concurrency = 4
Blob is stored over 18 disks

— 1543 erasure coding

!

—> O(n)

- I:)Conflict

T

Groups encapsulate constraints:
— Unit of 10 scheduling
— No constraint management at runtime

Schematic side-view of the rack

1O Scheduling: “spin up is the new seek”

Four independent schedulers

Each scheduler: 12 groups, only one can be active
* Naive scheduler: FIFO

— Avg. group activation time: 14.2 sec

— High probability of spinup after each request
— Time is spent doing spinups!

* Pelican scheduler: Request batching 0bateh 10 batch

— Limit on maximum re-ordering —-_>

— Trade-off between throughput and fairness Time
— Weighted fair-share between client and rebuild traffic

Outline: challenges of right-provisioning

1. Challenge: conflicts in domains reduce concurrency
Solution: constraint-aware data placement

2. Challenge: “spinup is the new seek”
Solution: /0 scheduler that amortizes spinup latency

Last part of the talk:
Performance impact of right-provisioning

Evaluating impact of right-provisioning

Pelican vs. rack with all disks active (called FP)
Cross-validated discrete-event simulator
Metrics (more in the paper):

— Rack throughput

— Latency (time to first byte)

— Power consumption

Open loop workload:

— Poisson arrival process

— Read requests on 1GB blobs
— Varying workload rate up to 8 requests/s

17

First step: simulator cross-validation

* Burst workload, varying burst intensity

Throughput (Gbps)

10 1000

0

8 —e-Simulator s

6 —e=Rack 3100
|2

4 "g 10 —e-Simulator

2 o ——Rack
£

0 = 1

8 32 128 512 2048 3 32 128 512 2048
Burst intensity (#req/burst) Burst intensity (#req/burst)

Simulator accurately predicts real system behaviour for all metrics.
See paper for more results.

18

Avg. throughput (Gbps)

40

Rack throughput

30 -+Random placement

20

10

)

M M i e

0.0625 0.125 0.25 0.5 1 2

Workload rate (req/s)

4

Avg. throughput (Gbps)

40

30

20

10

0

Rack throughput

-<FP
+Random placement
== =" 2 N e
0.06250.125 0.25 0.5 1 2 4

Workload rate (req/s)

Avg. throughput (Gbps)

40

30

20

10

0

|

¢

¥

Rack throughput

P
Pelican

Random placement

e N e

0.0625 0.125 0.25 0.5 1 2

Workload rate (req/s)

Time to first byte

10000
1000
100
10

1

0.1
0.01
0.001

0.0001
0.0625 0.125 0.25 0.5 1 2 4 8

14.2 seconds: average time to activate group

[P 4Pelican

Time to first byte (sec)

Workload rate (req/s)

Aggregate disk power

draw (kW)

Power consumption

12
10
8 s<All disks spun down
6
A
2 € >¢ >¢ >¢ >¢
1.8kW
0

0.0625 0.125 0.25 0.5 1 2

Workload rate (req/s)

23

Aggregate disk power

draw (kW)

Power consumption

12 10.8kw
10
8 =<All disks spun down ==-All disks active
6
A
2 € >¢ >¢ >¢ >¢ >¢ >¢
1.8kW
0

0.0625 0.125 0.25 0.5 1 2 4

Workload rate (req/s)

24

Aggregate disk power

draw (kW)

Power consumption

12 108w
10 , .
‘ ~-Pelican average -<All disks spun down
6 --All disks active
4
—— . o
2 € >¢ >¢ >¢ >¢ K
1.8kW
0

0.0625 0.125 0.25 0.5 1 2 4 3

Workload rate (req/s)

25

Aggregate disk power

draw (kW)

Power consumption: 3x lower peak

12 10.8kw
10 , ,
o --Pelican average -<All disks spun down
6 -=-All disks active --Pelican peak
3.7kW
4 L ¢ ¢ 4 3_ ¢ ¢ 4
o— —— === —— o
2 € > > > > x
1.8kW
0
0.0625 0.125 0.25 0.5 1 2 4 3

Workload rate (req/s)

26

Conclusion

Rack-scale hardware/software co-design

— Storage right-provisioned for cold data workload
— Efficient constraint-aware software storage stack

Prototype rack storing 5+ PB of raw data in 52U

Challenging design process:

— Many constraints to handle manually
— Sensitive to hardware changes
Follow up work:

— “Flamingo: Synthesizing cold storage stacks for Pelican-like systems”

— See our poster in tonight’s session

