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Background: cold data in the cloud

• Cold data: “written once – read rarely” access pattern

• Large fraction of stored data
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Pelican vs. Tape:
• Better performance
• Similar cost

Cold tier:
• High density
• Low hardware cost
• Low operating cost
• Latency lower than 

tape



Right-provisioning

• Provision resources just for the cold data workload:
–Disks: 

• Archival and SMR instead of commodity
–Power

–Cooling

–Bandwidth

Enough for bandwidth required by workload 
instead of 

for all disks spinning

–Servers: 

• Enough for data management instead of 1 server/ 40 disks

• Benefits of removing unnecessary resources:
–High density of storage

– Low hardware cost

– Low operating cost (capped performance)
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Pelican: rack-scale appliance for cold data

• Converged design:

– Power, cooling, mechanical, storage & software co-designed

• Right-provisioned for cold data workload:

– Resources for just workload requirements

• At most 8% disks spun up

• 2 servers

• No Top of Rack switch 

– 4x 10Gbps uplinks from the servers

• 1,152 disks in 52U: 22 disks/U

• 5+ PB of raw storage

Pelican rack prototype

Other disk-based storage:
Up to 15/U
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• Converged design:

– Power, cooling, mechanical, storage & software co-designed

• Right-provisioned for cold data workload:

– Resources for just workload requirements

• At most 8% disks spun up

• 2 servers

• No Top of Rack switch 

– 4x 10Gbps uplinks from the servers

• 1,152 disks in 52U: 22 disks/U

• 5+ PB of raw storage

Pelican rack prototype

Other disk-based storage:
Up to 15/U

• Total cost of ownership comparable to tape
• Lower latency than tape

 Challenging resource limitations managed in 
software
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Pelican storage stack: handling right-provisioning

• Co-designed with hardware

• Constraints over sets of active disks:

–Hard: power, cooling, failure domains

– Soft: bandwidth, vibration

Placement

IOs to disks

*.sys

kernel
userspace

requests Blob 

store API

Scheduler

• Software challenges:

– Data placement: concurrency of requests

– IO scheduling: minimize spin ups, fairness

– Recovery: minimize window of vulnerability

In this talk
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Impact of right provisioning on resources

• Systems provisioned for peak performance:

– Any disk can be active at any time

• Right-provisioned system:

– Disk part of a domain for each resource

– Domain supplies limited resources

– Disk active if enough resources in all its domains

• Pelican domains: 

– power, cooling, vibration, bandwidth

• Resource limitations:

– 2 active out of 16 per power domain

– 1 active out of 12 per cooling domain

– 1 active out of 2 per vibration domain

Disk d

Power 
domain of d

Cooling 
domain of d

Rack: 3D array of disks
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Data placement: maximizing request 
concurrency

• Blob erasure-encoded on a set of concurrently active disks

• In fully provisioned systems: 

– Any two sets can be active

– No impact of placement on concurrency

• In right-provisioned systems: 

– Sets can conflict in resource requirements

– Conflicting cannot be concurrently active

– Challenge: form sets that minimize P 
Disks of blob 1

Rack: 3D array of disks

First approach: random placement

Disks of blob 2

Conflict
Conflict
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Disks of blob 2

Conflict
Conflict

Random placement: 
Storing blobs on n disks,

P            O(n²)Conflict
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Pelican data placement

• Intuition: concentrate all conflicts over a few sets of disks

• Statically partition disks in groups in which disks can be 
concurrently active

• Property:

– Either fully conflicting

– Or fully independent

Schematic side-view of the rack

Power domain
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• Blob is stored in one group

– P               O(n)
Conflict

• Groups encapsulate constraints:

– Unit of IO scheduling

– No constraint management at runtime
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Pelican data placement
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Class: 12 fully-conflicting 
groups

• 48 groups of 24 disks

– 4 classes of 12 fully-conflicting groups

– Class is independent: concurrency = 4

• Blob is stored over 18 disks

– 15+3 erasure coding
• Blob is stored in one group

– P               O(n)
Conflict

• Groups encapsulate constraints:

– Unit of IO scheduling

– No constraint management at runtime
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IO Scheduling: “spin up is the new seek”

Four independent schedulers

Each scheduler: 12 groups, only one can be active

• Naïve scheduler: FIFO

– Avg. group activation time: 14.2 sec

– High probability of spinup after each request

– Time is spent doing spinups!

Time

Spin upSpin upSpin up… …

• Pelican scheduler: Request batching

– Limit on maximum re-ordering

– Trade-off between throughput and fairness

– Weighted fair-share between client and rebuild traffic

Time

Spin up

IO batch

Spin up ……
IO batch
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Outline: challenges of right-provisioning

1. Challenge: conflicts in domains reduce concurrency

Solution: constraint-aware data placement

2. Challenge: “spinup is the new seek”

Solution: IO scheduler that amortizes spinup latency

Last part of the talk: 

Performance impact of right-provisioning
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Evaluating impact of right-provisioning

• Pelican vs. rack with all disks active (called FP)

• Cross-validated discrete-event simulator

• Metrics (more in the paper):

– Rack throughput

– Latency (time to first byte)

– Power consumption

• Open loop workload:

– Poisson arrival process

– Read requests on 1GB blobs

– Varying workload rate up to 8 requests/s
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First step: simulator cross-validation

• Burst workload, varying burst intensity

Simulator accurately predicts real system behaviour for all metrics.
See paper for more results.
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Rack throughput
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Rack throughput
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Time to first byte
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Power consumption
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Power consumption
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Power consumption: 3x lower peak
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Conclusion

• Rack-scale hardware/software co-design
– Storage right-provisioned for cold data workload

– Efficient constraint-aware software storage stack

• Prototype rack storing 5+ PB of raw data in 52U

• Challenging design process:

– Many constraints to handle manually

– Sensitive to hardware changes

• Follow up work:
– “Flamingo: Synthesizing cold storage stacks for Pelican-like systems”

– See our poster in tonight’s session
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