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Access pattern

Write once,

Background: cold data in the cloud

* Cold data: “written once — read rarely” access pattern

* Large fraction of stored data
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 Better performance

* Similar cost
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Hot tier )
* Provisioned for peak
* High throughput

* Low latency

\’ High cost Y,

(Cold tier: )
* High density

* Low hardware cost

* Low operating cost

* Latency lower than

\_ tape -/




Right-provisioning

* Provision resources just for the cold data workload:
—Disks:

* Archival and SMR instead of commodity

—Pow.er Enough for bandwidth required by workload
—Cooling instead of

—Bandwidth for all disks spinning

—Servers:

* Enough for data management instead of 1 server/ 40 disks

o Benefits of removing unnecessary resources:
—High density of storage
— Low hardware cost

\_ —Low operating cost (capped performance) )




Pelican: rack-scale appliance for cold data

Converged design:

— Power, cooling, mechanical, storage & software co-designed

Right-provisioned for cold data workload:

— Resources for just workload requirements

At most 8% disks spun up
2 servers
No Top of Rack switch

— 4x 10Gbps uplinks from the servers

1,152 disks in 52U:|22 disks/U|
5+ PB of raw storage

Other disk-based storage:
®» Up to 15/U

Pelican rack prototype
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Pelican: rack-scale appliance for cold data

Converged design:

— Power, cooling, mechanical, storage & software co-designed

Right-provisioned for cold data workload:

— Resources for just workload requirements

At most 8% disksspunup 00000 R it

2 servers N I

N

* Total cost of ownership comparable to tape :

1' * Lower latency than tape

SC Challenging resource limitations managed in

software

PETICAan rack prototype
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Pelican storage stack: handling right-provisioning

* Co-designed with hardware

e Constraints over sets of active disks:

store API Placement

—Hard: power, cooling, failure domains BEE B
— Soft: bandwidth, vibration In this talk W
___userspace
kernel s to disks
* Software challenges: SR

— |T)ata placement: concurrency of requests NEiiiEtiiasiiais)
— |10 scheduling: minimize spin ups, fairness

— Recovery: minimize window of vulnerability



Impact of right provisioning on resources

Systems provisioned for peak performance:
— Any disk can be active at any time
Right-provisioned system:

— Disk part of a domain for each resource

— Domain supplies limited resources

— Disk active if enough resources in all its domains

Rack: 3D array of disks

Pelican domains:

— power, cooling, vibration, bandwidth

Resource limitations:

| I
Cooling
domain of d

— 2 active out of 16 per power domain

— 1 active out of 12 per cooling domain

— 1 active out of 2 per vibration domain L

Power
domain of d

HEEEEE




Data placement: maximizing request
concurrency

* Blob erasure-encoded on a set of concurrently active disks
* |In fuIIy provisioned systems: First approach: random placement

— Any two sets can be active

— No impact of placement on concurrency

* In right-provisioned systems: SEEEESEEEEEE N
o _ NEENENEEENEE| NN
— Sets can conflict in resource requirements gumpupuEn EEi =
— Conflicting cannot be concurrently active Y| BHHEHEHHHSHHERIH-
|

— Challenge: form sets that minimize P_
Conflict

Conflict

Disks of blob 1
O Disks of blob 2

Rack: 3D array of disks



Data placement: maximizing request
concurrency

* Blob erasure-encoded on a set of concurrently active disks
* |In fuIIy provisioned systems: First approach: random placement

— Any two sets can be active

— No impact of placement on concurre

Random placement:
Storing blobs on n disks,
IDConf/ict’ O(nz)

* In right-provisioned systems:

— Sets can conflict in resource requirem

— Conflicting cannot be concurrently active 1 EHHHH
H

— Challenge: form sets that minimize P_
Conflict

Conflict

Disks of blob 1
O Disks of blob 2

Rack: 3D array of disks
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Pelican data placement

Intuition: concentrate all conflicts over a few sets of disks

Statically partition disks in groups in which disks can be
concurrently active
Property:

— Either fully conflicting

— Or fully independent

Blob is stored in one group

- PConflict_> O( n)

Groups encapsulate constraints:
— Unit of 10 scheduling Schematic side-view of the rack

— No constraint management at runtime
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Pelican data placement

Intuition: concentrate all conflicts over a few sets of disks

Statically partition disks in groups in which disks can be

concurrently active

Property:

— Either fully conflicting

— Or fully independent

Blob is stored in one group

—> O(n)

- I:)Conflict

I Class: 12 fully-conflicting

groups

Groups encapsulate constraints:
— Unit of 10 scheduling
— No constraint management at runtime

Schematic side-view of the rack




Pelican data placement

Intuition: concentrate all conflicts over a few sets of disks

Statically partition disks in groups in which disks can be

concurrently active

Property:

— Either fully conflicting
— Or fully independent

Blob is stored in one group

48 groups of 24 disks
— 4 classes of 12 fully-conflicting groups
— Class is independent: concurrency = 4
Blob is stored over 18 disks

— 1543 erasure coding

!

—> O(n)

- I:)Conflict

T

Groups encapsulate constraints:
— Unit of 10 scheduling
— No constraint management at runtime

Schematic side-view of the rack



1O Scheduling: “spin up is the new seek”

Four independent schedulers

Each scheduler: 12 groups, only one can be active
* Naive scheduler: FIFO

— Avg. group activation time: 14.2 sec

— High probability of spinup after each request
— Time is spent doing spinups!

* Pelican scheduler: Request batching  0bateh 10 batch

— Limit on maximum re-ordering —-_>

— Trade-off between throughput and fairness Time
— Weighted fair-share between client and rebuild traffic



Outline: challenges of right-provisioning

1. Challenge: conflicts in domains reduce concurrency
Solution: constraint-aware data placement

2. Challenge: “spinup is the new seek”
Solution: /0 scheduler that amortizes spinup latency

Last part of the talk:
Performance impact of right-provisioning



Evaluating impact of right-provisioning

Pelican vs. rack with all disks active (called FP)
Cross-validated discrete-event simulator
Metrics (more in the paper):

— Rack throughput

— Latency (time to first byte)

— Power consumption

Open loop workload:

— Poisson arrival process

— Read requests on 1GB blobs
— Varying workload rate up to 8 requests/s
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First step: simulator cross-validation

* Burst workload, varying burst intensity

Throughput (Gbps)

10 1000

0

8 —e-Simulator s

6 —e=Rack 3100
|2

4 "g 10 —e-Simulator

2 o ——Rack
£

0 = 1

8 32 128 512 2048 3 32 128 512 2048
Burst intensity (#req/burst) Burst intensity (#req/burst)

Simulator accurately predicts real system behaviour for all metrics.
See paper for more results.
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Time to first byte
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14.2 seconds: average time to activate group
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Aggregate disk power
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Aggregate disk power
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Aggregate disk power
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Aggregate disk power
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Conclusion

Rack-scale hardware/software co-design

— Storage right-provisioned for cold data workload
— Efficient constraint-aware software storage stack

Prototype rack storing 5+ PB of raw data in 52U

Challenging design process:

— Many constraints to handle manually
— Sensitive to hardware changes
Follow up work:

— “Flamingo: Synthesizing cold storage stacks for Pelican-like systems”

— See our poster in tonight’s session



