A Self-Configurable Geo-Replicated Cloud Storage System

Masoud Saeida Ardekani, *Inria & UPMC* Douglas B. Terry,

Special thanks to:

Marcos K. Aguilera, Mahesh Balakrishnan, Ramakrishna Kotla

OSDI 2014

Scenario

The events, characters and firms depicted in this talk are fictitious. Any similarity to actual labs, living or dead, or to actual firms, is purely coincidental.

Key point: Configurations need to adapt.

Configuration Service

- Selects new configuration to improve overall utility delivered to clients
- Installs new configuration while clients continue to read and write data

Storage System Model

<u>Configuration</u> =

- 1. Location of primary replicas
- 2. Location of secondary replicas
- Synchronization period between primary and secondary replicas

Consistency-based SLAs

- Applications declare acceptable consistency/latency pairs and utility
- E.g. shopping cart

Selecting a Configuration

Installing a New Configuration

Move Primary Add Primary Downgrade Primary Add Secondary Remove Secondary Adjust Sync Period

Example: Move Primary

- 1. Set Reconfiguration-in-Progress (RiP) flag
- 2. Wait Δ seconds
- 3. Add new primary to write-only replicas
- 4. Clear RiP flag
- 5. Sync new primary from old
- 6. Set RiP flag
- 7. Wait Δ seconds
- 8. Write new configuration
- 9. Clear RiP flag

Leasing Configurations

Slow mode = unsure of current configuration Fast mode = hold lease on configuration for Δ seconds

Client Operations

	Fast	Slow
Read	Read from best replica (ala Pileus)	Do speculative read then check configuration
Write	Write to all primaries	Lock configuration, then write

Implementation Notes

- Built on Azure Blob Store
- C.S. stores configuration blob

 read periodically by clients
 RiP flag stored as metadata

- Clients periodically write SLAs, read/write ratios, and latencies to blobs

 read by C.S. during reconfiguration
- C.S. can run intermittently

Evaluation Setup

YCSB [SoCC'10] Workload B (95% Read, 5% Write) 1000 Objects (1KB each)

unused

Consistency Latency Utility

Social Network SLA

Eventual	250 ms	0.5	
RMW	100 ms	0.7	
Strong	100 ms	1.0	

Constraints Replication factor ≤ 2 Single primary

Evaluation

Evaluation

Improved Consistency

Conclusions

- Storage systems should adapt to changing client demands
- Utility/cost is a useful metric for selecting improved configurations
- Automatic reconfiguration can occur in parallel with running applications
- Substantial consistency gains are possible