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Cloud datacenters offer services implemented by appliances

* Persistent storage
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Appliances (and the network) are shared among tenants
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Network and appliance throughput varies by up to 5X in datacenters
due to contention at shared resources [SIGCOMM’11]

Applications experience degraded and unpredictable performance




Tenants should get end-to-end guarantees

* |solate tenants across the network

e Oktopus [SIGCOMM’11], ElasticSwitch [SIGCOMM’13]

* |solate tenants at appliances

* DRFQ [SIGCOMM’12], Pisces [OSDI'12], IOFlow [SOSP"13]
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Enforcing per-resource guarantees is not sufficient

Large Read request (request itself is a tiny header)

; Storage server
GitHub «— Appliance performance isolation
r‘—g doesn’t help...
& reddit N
- Network performance isolation

Large Write request (contains actual payload)

We need a new abstraction that encapsulates the
semantics of end-to-end guarantees




Outline

v'Introduction

* VVirtual Datacenter (VDC) abstraction

* Throughput metric

e Architecture of Pulsar

* Experimental evaluation



Virtual Datacenters (VDC) encapsulate end-to-end guarantees

/ Virtual Appliances \

GitHub ,

Virtual Network

V VM,

v
\ Virtual Machines /




Virtual Datacenters (VDC) encapsulate end-to-end guarantees

Virtual Appliances \
L,_, Guaranteed
G. G, Gol “ | " virtual ca pacities
GitHub :

Virtual Network

‘Gl GN‘

V VM,

v
\ Virtual Machines /




Virtual Datacenters (VDC) encapsulate end-to-end guarantees
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Admission control is performed when placing tenants” VDCs
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Standard throughput metrics have major tradeoffs

e Relative metrics: % share of the appliance

v’ Provider: easy provisioning

x Tenants: performance variability still present

*Absolute metrics: requests/second or bytes/second

x Provider: provisioning based on costliest request
v’ Tenants: absolute throughput guarantees
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Request cost varies with request characteristics

Guaranteeing requests/second requires conservative provisioning

SSD-backed blockstore

_ 150

§ Writes
g 100

~~

= 50 Reads
o

O 0

0.5 32 64

Request Size (KB)



Virtual request cost (in tokens)

* Provider selects a (fixed) virtual cost function for each resource



Virtual request cost (in tokens)

* Provider selects a (fixed) virtual cost function for each resource

SSD-backed blockstore Network Links / NICs
2 Writes .
% Reads T
V4
= )
|_

Request size Request size



Virtual request cost (in tokens)

* Provider selects a (fixed) virtual cost function for each resource

SSD-backed blockstore Network Links / NICs
2 Writes .
% Reads T
V4
= )
|_

Request size Request size

e Guaranteed virtual capacities are defined in tokens/sec



Virtual request cost (in tokens)

* Provider selects a (fixed) virtual cost function for each resource
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Virtual request cost strikes a good compromise
between tenants and the provider

* Tenants can translate their guarantees to other metrics for their
workloads

6@‘9 Guarantee: 32 Ktokens/sec
) 3(\6
C \5"5
< N Workload:
2 32K + 8KBPUTs -->2 PUT/sec
32 KB * 32 KB GETs -->1 GET/sec

Request size

* Provider has more flexibility when provisioning the datacenter
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Design goals and decisions

 No modification to appliances, switches, guest OSes, applications

* Perform enforcement entirely at end-hosts via a rate enforcer

e Preserve work-conservation

e Allocate unused resources to tenants and VMs that can use them

* Requires coordination between rate enforcers

e Enable rich policies that are easy to change
e Simplicity is key

* Perform coordination through a centralized control plane
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Pulsar’s architecture

Compute server Rate enforcer

o R * Estimates the demand of every VM

VM, VM, VM, .
 Emulates request cost at different

resources by applying cost functions

Hypervisor

Rate Enforcer

e Enforces allocation provided by

Network Interface Card
controller
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Pulsar allocates resources to each VM-VM pair
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* Tenant-specified policy

* Specifies how VDC resources are divided to VMs
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Allocations are based on two policies

* Tenant-specified policy

* Specifies how VDC resources are divided to VMs

gredd‘i’r \

Example policies:

20 tokens/sec i * Divide 20 tokens/sec fairly across all active VMs

Virtual Network
ﬁ i * Give all 20 tokens/sec to VM 3 (whenever it is active)
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Allocations are based on two policies

* Tenant-specified policy

* Specifies how VDC resources are divided to VMs

* Provider-specified policy
* Specifies how spare resources are given to tenants’ VMs
Example policies:
e Distribute spare resource fairly across all tenants” VMs

* Distribute spare resources in a way that maximizes profit



Pulsar’s architecture

Compute server Centralized controller

Capacity estimation




Congestion control protocols estimate network
capacity

e Basic idea

* Fach network flow probes for a higher capacity estimate

* Decreases allocation on observing congestion



Congestion control protocols estimate network
capacity

e Basic idea

* Fach network flow probes for a higher capacity estimate

* Decreases allocation on observing congestion

* Challenges

* Congestion signals are not present or noisy
* Distributed operation is complex

e Estimation is tightly coupled with allocation



Centralized estimation algorithm
* Maintain window for capacity estimate

* Refine window based on congestion signals
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Controller-based capacity estimation
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Controller-based capacity estimation
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Controller-based capacity estimation
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Controller-based capacity estimation
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Controller-based capacity estimation

Control equation
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We rely on two congestion signals

* Aggregate throughput < Capacity estimate
* VDC-compliant workload

* Helps find capacity for VDC-compliant workload

 Detailed example in the paper!



Implementation

* Rate enforcer

e Filter driver running on Hyper-v

* Enforces allocations using a multi-resource token bucket

e Controller

e Stand-alone server
e Allocation mechanisms include DRF [NSDI'11], H-DRF [SOCC’13]

* Installs relevant cost functions in rate enforcers



Evaluation questions

1. Can Pulsar isolate tenants and meet their guarantees?

2. Can Pulsar estimate appliance capacity?

3. What are the data- and control-plane overheads?



Experimental setup and testbed

- N
* 3 Appliances: == g {/

In-memory key-value store  Blockstore (6 SSDs)  Encryption device

* Network: Mellanox 40 Gbps RDMA RoCE full-duplex

* 10 compute servers (total of 113 VMs)
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* Workloads are generated with parameters from Hotmail traces



Workloads and expected throughput

* 4 Tenants: A—D (tenants share at least one resource)
* Workloads are generated with parameters from Hotmail traces

 Expected throughput (tokens/second):

Tenant A* B c* D

Guarantee 400 M 1600 M 300 M 300 M

VMs 49 (many flows) 48 8 (large 10 window) 8
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Pulsar achieves tenants’ guarantees
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Can Pulsar estimate appliance capacity?
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Pulsar estimates capacities and copes with
changing workloads
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What are the data- and control-plane overheads?



Data- and control-plane overheads are reasonable

Data-plane

e Overhead from rate enforcer < 2% (15% for small requests)

Control-plane

* 256 bytes/sec for each VM
e Setting up cost functions at rate enforcers takes 83 us

* Can compute rich policies for 24K VMs and 200 appliances



Summary

 \irtual Datacenter (VDC) abstraction

e Captures tenants’ end-to-end throughput guarantees

* Pulsar implements the VDC abstraction

e Simple data-plane rate limiting and centralized control-plane
* No changes to appliances, switches, guest OSes, and apps

e Reasonable data- and control-plane overheads

e See you at the poster session!



