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Cloud datacenters offer services implemented by appliances

• Persistent storage

• Middleboxes

Key-value store Blockstore

Load balancer Traffic optimizerEncryption device
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Network and appliance throughput varies by up to 5X in datacenters
due to contention at shared resources [SIGCOMM’11]

Appliances (and the network) are shared among tenants

Traffic optimizer

Applications experience degraded and unpredictable performance



Tenants should get end-to-end guarantees

• Isolate tenants across the network

• Oktopus [SIGCOMM’11], ElasticSwitch [SIGCOMM’13]

• Isolate tenants at appliances

• DRFQ [SIGCOMM’12], Pisces [OSDI’12], IOFlow [SOSP’13]
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Enforcing per-resource guarantees is not sufficient

Large Read request (request itself is a tiny header)

Large Write request (contains actual payload)

Storage server

Network performance isolation

Appliance performance isolation

doesn’t help…

GitHub

We need a new abstraction that encapsulates the 
semantics of end-to-end guarantees
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• Throughput metric

• Architecture of Pulsar
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Virtual Datacenters (VDC) encapsulate end-to-end guarantees

Virtual Appliances

Virtual Machines

Virtual Network

VM1 VMN

...

GS GE GO

G1 GN

GitHub

Guaranteed
virtual capacities

Can be fixed or minimum

Predictability Elasticity



...

Virtual Network
Virtual Network

...

Virtual Network

...

GitHub

Admission control is performed when placing tenants’ VDCs
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Standard throughput metrics have major tradeoffs

• Relative metrics: % share of the appliance

 Provider: easy provisioning

 Tenants: performance variability still present

•Absolute metrics: requests/second or bytes/second
 Provider: provisioning based on costliest request
 Tenants: absolute throughput guarantees
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Guaranteeing requests/second requires conservative provisioning
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Virtual request cost (in tokens)

• Provider selects a (fixed) virtual cost function for each resource

• Guaranteed virtual capacities are defined in tokens/sec

Request size

To
ke

n
s Writes

Reads

SSD-backed blockstore

Request size

To
ke

n
s

Network Links / NICs

...

Virtual Network

KB/s or IOPs?

bps?

Requests/sec?
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Virtual request cost strikes a good compromise 
between tenants and the provider

• Tenants can translate their guarantees to other metrics for their 
workloads

• Provider has more flexibility when provisioning the datacenter

32K 

32 KB
Request size

To
ke

n
s

Guarantee: 32 Ktokens/sec

Workload: 
• 8 KB PUTs   --> 2 PUT/sec
• 32 KB GETs --> 1 GET/sec
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Design goals and decisions

• No modification to appliances, switches, guest OSes, applications

• Perform enforcement entirely at end-hosts via a rate enforcer

• Preserve work-conservation

• Allocate unused resources to tenants and VMs that can use them

• Requires coordination between rate enforcers 

• Enable rich policies that are easy to change

• Simplicity is key

• Perform coordination through a centralized control plane
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Rate enforcer

• Estimates the demand of every VM

• Emulates request cost at different 
resources by applying cost functions

• Enforces allocation provided by 
controller

Pulsar’s architecture
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VDCs Topology

Tenant rate allocation

Pulsar allocates resources to each VM-VM pair

Policies

Capacity of each resource

Per-VM demands

, ,
Source VM Destination VM

Links + NIC Appliance Links + NIC
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Allocations are based on two policies

•Tenant-specified policy

• Specifies how VDC resources are divided to VMs

Virtual Network

...

20 tokens/sec

Example policies:

• Divide 20 tokens/sec fairly across all active VMs

• Give all 20 tokens/sec to VM 3 (whenever it is active)
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Allocations are based on two policies

•Tenant-specified policy

• Specifies how VDC resources are divided to VMs

•Provider-specified policy

• Specifies how spare resources are given to tenants’ VMs

Example policies:

• Distribute spare resource fairly across all tenants’ VMs

• Distribute spare resources in a way that maximizes profit



Pulsar’s architecture

Centralized controller

VDCs Topology…

VM1 VM2 VMN

Rate Enforcer

Network Interface Card

Hypervisor

Compute server

Capacity estimation

Tenant rate allocation
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Congestion control protocols estimate network 
capacity

•Basic idea 

• Each network flow probes for a higher capacity estimate

• Decreases allocation on observing congestion

•Challenges

• Congestion signals are not present or noisy

• Distributed operation is complex

• Estimation is tightly coupled with allocation



Centralized estimation algorithm

•Maintain window for capacity estimate

•Refine window based on congestion signals
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We rely on two congestion signals

• Aggregate throughput < Capacity estimate

• VDC-compliant workload

• Helps find capacity for VDC-compliant workload

• Detailed example in the paper!



Implementation

•Rate enforcer

• Filter driver running on Hyper-v

• Enforces allocations using a multi-resource token bucket

•Controller

• Stand-alone server

• Allocation mechanisms include DRF [NSDI’11], H-DRF [SOCC’13]

• Installs relevant cost functions in rate enforcers



Evaluation questions

1. Can Pulsar isolate tenants and meet their guarantees?

2. Can Pulsar estimate appliance capacity?

3. What are the data- and control-plane overheads?



Experimental setup and testbed

• 3 Appliances:

• Network: Mellanox 40 Gbps RDMA RoCE full-duplex

• 10 compute servers (total of 113 VMs) 

In-memory key-value store Blockstore (6 SSDs) Encryption device 
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Workloads and expected throughput

• 4 Tenants: A—D (tenants share at least one resource)

• Workloads are generated with parameters from Hotmail traces

• Expected throughput (tokens/second): 

Tenant A* B C* D

Guarantee 400 M 1600 M 800 M 800 M

VMs 49 (many flows) 48 8 (large IO window) 8
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Pulsar achieves tenants’ guarantees
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Can Pulsar estimate appliance capacity?
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changing workloads

In-memory Key-value store
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Pulsar estimates capacities and copes with 
changing workloads

In-memory Key-value store
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What are the data- and control-plane overheads?



Data- and control-plane overheads are reasonable

Data-plane

• Overhead from rate enforcer < 2% (15% for small requests)

Control-plane

• 256 bytes/sec for each VM

• Setting up cost functions at rate enforcers takes 83 µs

• Can compute rich policies for 24K VMs and 200 appliances



Summary

• Virtual Datacenter (VDC) abstraction

• Captures tenants’ end-to-end throughput guarantees

•Pulsar implements the VDC abstraction

• Simple data-plane rate limiting and centralized control-plane

• No changes to appliances, switches, guest OSes, and apps

• Reasonable data- and control-plane overheads

•See you at the poster session!


