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Abstract Pipeline View

Platform View

Process Train Validate Harden Deploy

  COS

Compute
Cluster

Learning
Cluster

Read Execute Write ......

Operationalizing AI: Three Views
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Operating Automated AI Pipelines

e Retraining rule/trigger

 if performance < 0.8 and
cnt(new_data) > n

Process Train Evaluate Deploye

Perf.
Model

Runtime
Monitoring

Data

 every 4 weeks 

● Models become stale, automatic retraining will become common
● Operators will be challenged to maintain many

automated continuous training loops
● Cost-benefit trade-off between retraining and

model performance improvement

?
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Operating Automated AI Pipelines

e Retraining rule/trigger

 if performance < 0.8 and
cnt(new_data) > n

Process Train Evaluate Deploye

Perf.
Model

Runtime
Monitoring

Data

 every 4 weeks 

● Probabilistic parameters
– Expected improvement (EI)
– Risk (e.g., human intervention)
– Priority (how important is

this model/tenant)?
● Resource availability

Scheduler / Optimizer

Infrastructure / Budget

Fitness?
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DRAFT

System model?
How to validate?
System model?

How to validate?
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AI Ops Experimentation and
Analytics Framework 
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AI Ops Experimentation & Analytics Framew.
● Develop and test operational mechanisms
● Use current understanding of platforms to build an

AI Ops experimentation environment
– Model a pipeline execution and AI operations platform
– Generate synthetic pipelines and data
– Simulate execution of pipelines
– Study and analyze system behavior (answer “what if ” questions)

● Requires good fidelity to be useful, i.e., exceed simple theoretical 
models, grounded using empirical data
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Developing the System Model
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Key Ingredients

● System model for AI ops platforms

● Synthetic data and pipelines

● Process model
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System model: build time
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System model: run time

Model Train & Deploy

... ... ...

Trained
Classifier v1

Time

Confidence 0.78 0.82 0.80 0.85

Drift 0.09 0.10 0.21 0.08

Staleness 0.00 0.01 0.02 0.00

Trained
Classifier v2

Drift &
Staleness
Detector

Pipeline
Instances

Models
& Metrics

Performance
Monitoring

Model Train & Deploy

... ... ...

Trigger
Rules

Scoring 
Requests

✓ ✓ ✗

triggers

monitors t1 t2 t3

✓

t4

Drift
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Synthetic data
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Data
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dimensions?

size?

pipeline steps?

Pipeline

framework?
estimator type?

size?
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Synthetic data: pipelines
Process Train Evaluate Deploy

Process Train Harden Compress

Bias
Detection

Evaluate Deploy

Process Train Evaluate

Base
Model

User-specific models

● Some pipelines we know about
1. Simple (typical AI web platforms)

2. Extended (custom workflows)

3. Hierarchical (e.g., transfer learning or 
user-specific models)

● Frameworks used

tensorflow

pytorch

caffe

spark
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loge trans-
formation
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Cluster with
Gaussian Mixture
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401k bytes
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?

cells = columns * rows

Data
refinery
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Process model

● How long do pipeline task execute?

● How frequently are pipelines executed?

● How do models metrics change over time?

Process Train Harden

t

Performance
Model
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Process model: task computation time
Data Processing

(size of data asset vs processing time)

Spark

Tensorflow

Pytorch

Caffe

Training
(stratified per framework)

p.95 = 8000

p.95 = 20000

p.95 = 350

p.95 = 50
f(x) = abx+c
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Process model: generating load

t

Pipeline arrivals
(sampled from training jobs)

t0 t1 t2
...

a0,1 a1,2 ...

We model the interarrivals A
as a random variable

Pareto
Weibull Minimum
Exponential Weibull

...

Long tail
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Process model: arrival profiles

Just another manic Monday …
(of training jobs)

… wish it was Sunday.
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Process model: arrival profiles

24 * 7 = 168 clusters
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Process model: run time

Process ModelData

e

...

data sources

?

?

scoring

Lots of open questions
how run time behaves!

?



23

More open problems
● Conditional modeling between pipeline tasks
● Modeling of system dynamics and growth
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Demo

Simulator Exploratory
Analysis
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Simulation accuracy & performance

Details in an extended tech report

https://arxiv.org/abs/2006.12587
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