An Experimentation and Analytics Framework for Large-Scale AI Operations Platforms

Thomas Rausch

Waldemar Hummer

Vinod Muthusamy

IBM Research AI

Operationalizing AI

Operationalizing AI: Three Views

Build Al Model		Deploy AI Application 🕑 🤅	ž
STAGE PASSED		STAGE PASSED	
PUT o input configured		INPUT No input configured	
BS View logs	and history	JOBS View logs and histor	ry.
Bias Check Passed 8m ago Irrain Model Passed 7m ago Harden Model Passed 6m ago		 Deploy Model Passed now Package Applica Passed now Deploy Application Passed now 	
ST EXECUTION RESULT		LAST EXECUTION RESULT	
Bias Check 10	<u>ن</u> -	표 Deploy Model 1 🕤 ་	
品 Train Model 10	ن ک	A Package Application 1	
Harden Model 10	u ↑ -	品 Deploy Application 1 (① *	

User View

Abstract **Pipeline** View

Platform View

Operating Automated AI Pipelines

- Models become stale, automatic retraining will become common
 - Operators will be challenged to maintain many automated continuous training loops
 - Cost-benefit trade-off between retraining and model performance improvement

Operating Automated AI Pipelines

e Retraining rule/trigger

if performance < 0.8 and cnt(new_data) > n

every 4 weeks

Infrastructure / Budget

The AlOps Scheduling Problem

DRAFT

Given a set of continuous training loops that are scheduled to run automatically to meet SLAs

where SLAs are soft-constraints imposed on the scheduling policy, e.g.,

- ACU > 0.8
- at least every 4 weeks
- at X new data

and given the current state of the execution environment, and historical information on pipeline executions

assign to each pipeline a timestamp at which to execute the pipeline next, such that the following goals are met or optimized:

- · Maximize estimated improvement (EI)
- Minimize SLA violations
- · Maintain fairness across users
- Balance resource use of infrastructure (given regular operations and serving of jobs)

Maximize estimated improvement (or minimize 'stalene:

- Estimated improvement of a pipeline could be calculate
 - the number of newly available labeled data for retra
 - time since last retraining
 - current model performance
- Hard facts: model drift

Minimizing SLA violations:

- Prioritize critical pipelines, i.e. where SLA violations are
- Requires the calculation of a delta between the current sector and the operations of a delta between the current sector and the sector and the

Maintain fairness across users:

- Maximizing the overall EI may result in bias towards users that own many pipelines that degrade quickly
- · Pipelines of users should not suffer from starvation

Balance resource use of infrastructure:

System model? How to validate?

AI Ops Experimentation and Analytics Framework

AI Ops Experimentation & Analytics Framew.

- Develop and test operational mechanisms
- Use current understanding of platforms to build an AI Ops experimentation environment
 - Model a pipeline execution and AI operations platform
 - Generate synthetic pipelines and data
 - Simulate execution of pipelines
 - Study and analyze system behavior (answer "*what if* " questions)
- Requires good fidelity to be useful, i.e., exceed simple theoretical models, grounded using empirical data

emulates

Developing the System Model

Key Ingredients

- System model for AI ops platforms
- Synthetic data and pipelines

• Process model

System model: build time

System model: run time

Synthetic data

Synthetic data: pipelines

- Some pipelines we know about
 - 1. Simple (typical AI web platforms)
 - 2. Extended (custom workflows)
 - 3. Hierarchical (e.g., transfer learning or user-specific models)
- Frameworks used

Process model

• How long do pipeline task execute?

• How frequently are pipelines executed?

• How do models metrics change over time?

Process model: task computation time

Data Processing

(size of data asset vs processing time)

Training (stratified per framework)

Process model: generating load

Process model: arrival profiles

Just another manic **Monday** ... (of training jobs)

... wish it was **Sunday**.

Process model: arrival profiles

24 * 7 = 168 clusters

Process model: run time

data sources

More open problems

Average number of jobs

- Conditional modeling between pipeline tasks
- Modeling of system dynamics and growth

23

Demo

Simulation accuracy & performance

