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Background

- Cloud services ensure reliability by redundancy:

- Storing data redundantly
- Replicating service states across multiple nodes

« Examples:

- Amazon AWS, AliCloud, Google Cloud, etc. replicate their
data and service states



However, cloud outages still occur

amazon Correlated failures resultina from EBS |

wehserices Aia ta hiine in nna FRQ e RParlcenara O itane Nov 12th
5. MEZ=HEE 6 A 27 H

Summ
Ei
We'd il
in the | LAY
AWS ¢l Hp
custom

w8 Why redundancy does not help?

|

'.fter

‘l.
q Google Ouf




An AWS QOutage in 2018

AWS outage killed some cloudy
servers, recovery time is uncertain

‘Power event’ blamed, hit subset of kit in US-EAST-
1

By Simon Sharwood 1 Jun 2018 at 00:48 16 () SHARE Y

Updated Parts of Amazon Web Services' US-East-1 region have
experienced about half an hour of downtime, but some customers'
instances and data can't be restored because the hardware running them
appears to have experienced complete failure.

The cloud colossus’ status page reports an investigation of “connectivity
issues affecting some instances in a single Availability Zone in the US-
EAST-1 Region” as of 3:13 PM PDT on Thursday, May 31.

A 3:42 PM update confirmed “an issue in one of the datacenters that
makes up one of US-EAST-1 Availability Zones. This was a result of a
power event impacting a small percentage of the physical servers in that

datacenter as well as some of the networking devices.”
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Correlated failures resulting from
deep dependencies
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Correlated Failures

- Correlated failures are harmful and epidemic:

- Propagated to all the redundant instances
- Undermine redundancy and fault tolerance efforts




Correlated failures are prevalen
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AWS Database Blog

Amazon Aurora under the hood: quorums and correlated failure

Amazon Aurora*, Aurora, Database*, MySQL Compatible*, PostgreSQL Compatible* | Permalink | @ Comments
7 Share

Anurag Gupta runs a number of AWS database services, including Amazon Aurora, which he helped design. In this Under the Hood
series, Anurag discusses the design considerations and technology underpinning Aurora.

Amazon Aurora storage is a highly distributed system that needs to meet the stringent performance, availability, and durability
requirements of a high-end relational database. This post is the first of a four-part series that covers some of the key elements of ou
design.

There isn't a lot of publicly available material discussing tradeoffs in real-world durability, availability, and performance at scale.
Although this series is based on the considerations involved in designing a transactional database, | believe it should be relevant to
anyone architecting systems involving the coordination of mutable distributed state.
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State of the Art

Post-Failure Forensics

1. Diagnosis (e.g., Sherlock [SIGCOMM'07])

2. Accountability (e.g., AVM [OSDI'10])
3. Provenance (e.g., DiffProv [SIGCOMM’16])
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initialization

Service Runtime——————



Proactive Auditing

1. INDaas [OSDI’'14]

2
3

.reCloud [CONEXT'16]

. RepAudit [OOPSLA'17]
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Proactive Auditing

- They did pre-deployment recommendations:
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Proactive Auditing

- They did pre-deployment recommendations:
- Step1: Automatically collecting dependency data
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Proactive Auditing

- They did pre-deployment recommendations:

- Step1: Automatically collecting dependency data
- Step2: Modeling system stack in fault graph
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Proactive Auditing

- They did pre-deployment recommendations:

- Ste
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- Ste

01: Automatically collecting dependency data
02: Modeling system stack in fault graph

n03: Evaluating alternative deployments’independence
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Redundancy configuration fails




Redundancy configuration fails
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Redundancy configuration fails
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Proactive Auditing

1. INDaas [OSDI’'14]

2
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.reCloud [CONEXT'16]

. RepAudit [OOPSLA'17]
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Correlated Failure Risks in Updates

Google Outage in Eastern U.S. Affecting Gmail, YouTube, and More

By Lawrence Abrams
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Benjamin Treynor Sloss, Google's VP of
engineering, explained that the root cause
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across several neighboring regions.
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Problem 1: Inefficient Auditing in Updates

Proactive Auditing O(50) hours per auditing
V.S.
1. INDaas [OSDI"14] One update every 3 hours

2
3

.reCloud [CONEXT'16]

. RepAudit [OOPSLA'17]

Service Changing Upgrading software
initialization network paths  components

Service Runtime——————



Problem 2: Lack of fixing risks

Proactive Auditing

1. INDaas [OSDI’'14]

2
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.reCloud [CONEXT'16]

. RepAudit [OOPSLA'17]
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Our Contribution

CloudCanary
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S

Service Changing Upgrading software
initialization network paths  components

Service Runtime——————



CloudCanary’s Workflow

Updated
Service Snapshot

Operator



CloudCanary’s Workflow

Updated

Service Snapshot
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CloudCanary’s Workflow
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CloudCanary’s Workflow

Updated
Service Snapshot ]
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1 - o | Dependency acquisition [
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- 1 [ [
Fault Graph
1. {CoreRouter-1}
2. {Agg1, Agg2}
f\ — SnapAudit
Operator

« Challenge 1: SnapAudit



CloudCanary’s Workflow
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CIoudCanary s Workflow

Updated CloudCanary
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|
Dependency acquisition [
—-—> and » 1L ]
Fault graph generator A A
O s A
Fault Graph
1. {CoreRouter-1}
: 2. {Agg1, Agg2}
BN ~—— SnapAudit
@, :  Reliability Goal
() = > DepBooster
Operator - Improvement Plans

-Challenge 1: SnapAudit
 Challenge 2: DepBooster



A Fault Graph

Redundancy Deployment

a

A1 A2 A3




Risk Groups in Fault Graphs

Redundancy Deployment

- A risk group means a set of leaf nodes whose
simultaneous failures lead to the failure of root node



Risk Groups in Fault Graphs

Redundancy Deployment

- A risk group means a set of leaf nodes whose
simultaneous failures lead to the failure of root node
{A2} and {A1, A3} are risk groups
{A1} or {A3}is not risk group



Risk Groups in Fault Graphs

Redundancy Deployment

{
N

ldentifying correlated failure risks can be reduced to
the problem of finding risk groups in the fault graph.

However, analyzing risk groups is

NP-complete problem
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{A2} and {A1, A3} are risk groups
{A1} or {A3}is not risk group




CIoudCanary s Workflow
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The Insight of SnapAudit
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The Insight of SnapAudit

CloudCanary
FirstV
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The Insight of SnapAudit

CloudCanary
FirstAudit —~ TN
IncAudit IncAudit IncAudit
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SnapAudit: FirstAudit & IncAudit

CloudCanary
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FirstAudit Primitive
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SnapAudit: FirstAudit & IncAudit
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Our Insight

» Algorithm sketch:
- Finding all the border nodes (black nodes)
- Computing their risk groups
- Merging these risk groups towards root




H(F)=x31g

H(R)=aed8
R 1w
I R (Y
-{B)
A L&

- {B}
-{A, C}
H(D)=43cd
-{A}
- {B}

H(E)=a4vo

Original Deployment

H(Z)=lktd

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}
-{S,T}

H(Y)=bbk9

o
-{A.S}




H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

-{A}
-{B}

Updated Deployment

H(R)=aed8

R 1w
I R (Y

-{B)
A &

H(E)=a4vo

H(Z)=lktd

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}

-{S,T}

H(Y)=bbk9

o
-{A.S}




H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

-{A}
-{B}

Updated Deployment

H(R)=aed8

R w
I R (Y

-{B)
A &

H(E)=a4vo

H(Z)=2xzb

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}

-{S,T}

H(Y)=bbk9

o
-{A.S}




H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

-{A}
-{B}

Updated Deployment

H(R)=45z¢c

R 1w
I R (Y

-{B)
A &

H(E)=a4vo

H(Z)=2xzb

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}

-{S,T}

H(Y)=bbk9

o
-{A.S}




Step 1: Find Border Nodes
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Step 2: Q’s Risk Groups
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Our Insight

Redundancy Deployment
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= (AIVA2)A(A2VA3)



Our Insight

Redundancy Deployment
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Satisfying assignment:

+

{A1=1, A2=0, A3=1}
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Boolean formula
= E/AE>

= (AIVA2)A(A2VA3)
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Our Insight

e Problem:

- Standard SAT solver outputs an arbitrary satisfying
assignment




Our Insight

» Problem:
- Standard SAT solver outputs an arbitrary satisfying
assignment
- What we want is top-k critical (minimal) risk groups
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ldentifying Risk Groups

e Using MinCostSAT solver
- Satisfiable assignment with the least weights

- Obtaintheleast C=) ci-w;
- Very fast with 100% accuracy



ldentifying Risk Groups

e Using MinCostSAT solver
- Satisfiable assignment with the least weights

- Obtaintheleast C=) ci-w;
- Very fast with 100% accuracy

We set the values of all the leaf nodes (i.e., W;) as 1



ldentifying Risk Groups

e Using MinCostSAT solver
- Satisfiable assignment with the least weights

- Obtaintheleast C=) ci-w;
- Very fast with 100% accuracy

Redundancy Deployment A1 A2 A3 Weight

y 1 0 0
0 1 0 1

; ? 0 0 1
Data Source E1 Data Source E2 1 ] 0 5
ﬁ é 1 0 1 2

Y Y Y

A1 A2 A3 8 2) ;I) 2
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ldentifying Risk Groups

e Using MinCostSAT solver
- Satisfiable assignment with the least weights

- Obtaintheleast C=) ci-w;

- Very fast with 100% accuracy

Redundancy Deployment
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o0

O E
A2 A3
1
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J J
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ldentifying Risk Groups

 Find out the top-k critical risk groups

- Use a A to connect the current formula and the
negation of the resulting assignment

(AIVA2)A(A2VA3) A (1A A A2 A DA3)



Step 2: Q’s Risk Groups
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Correlated Failure Risk Repairing
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Correlated Failure Risk Repairing
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CIoudCanary s Workflow

Updated CloudCanary
Service Snapshot ]
|
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Challenge 1: SnapAudit
 Challenge 2: DepBooster



Evaluation

- Comparing CloudCanary with the state of the art

- Evaluating CloudCanary’s practicality via real dataset



Evaluation

- Accuracy Efficiency Improvement
INEEL
[OSDI’14]
ProbINDaaS
[OSDI’14]

reCloud
[CoONEXT’16]

CloudCanary

RepAudit
[OOPSLA’17]



Efficiency Comparison

Auditing Time (hours)
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Accuracy V.S. Efficiency

. 20,608 switches; 524,288 servers; 638,592 software components
- Auditing a random update affecting 20% components
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Our approach is 200x faster than state-of-
the-arts, and offers 100% accurate results.
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Evaluation

- We evaluated CloudCanary via real update trace:
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Microservices
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Conclusion

- CloudCanary is the first system for real-time auditing
- SnapAudit primitive: Quickly auditing update snapshot
- DepBooster: Quickly generating improvement plans

- We evaluated CloudCanary with real trace and large-
scale emulations



Thanks, questions?

- CloudCanary is the first system for real-time auditing
- SnapAudit primitive: Quickly auditing update snapshot
- DepBooster: Quickly generating improvement plans

- We evaluated CloudCanary with real trace and large-
scale emulations



