Check before You Change:

Preventing Correlated Failures in Service Updates

Ennan Zhai AngChen RuzicaPiskac Mahesh Balakrishnan

£l facebook
Alibaba Group
DD ER
Bingchuan Tian BoSong Haoliang Zhang

TYIY. Google

NANJING UNIVERSITY

Background

- Cloud services ensure reliability by redundancy:

- Storing data redundantly
- Replicating service states across multiple nodes

« Examples:

- Amazon AWS, AliCloud, Google Cloud, etc. replicate their
data and service states

However, cloud outages still occur

amazon Correlated failures resultina from EBS |

wehserices Aia ta hiine in nna FRQ e RParlcenara O itane Nov 12th
5. MEZ=HEE 6 A 27 H

Summ
Ei
We'd il
in the | LAY
AWS ¢l Hp
custom

w8 Why redundancy does not help?

|

'.fter

‘l.
q Google Ouf

An AWS QOutage in 2018

AWS outage killed some cloudy
servers, recovery time is uncertain

‘Power event’ blamed, hit subset of kit in US-EAST-
1

By Simon Sharwood 1 Jun 2018 at 00:48 16 () SHARE Y

Updated Parts of Amazon Web Services' US-East-1 region have
experienced about half an hour of downtime, but some customers'
instances and data can't be restored because the hardware running them
appears to have experienced complete failure.

The cloud colossus’ status page reports an investigation of “connectivity
issues affecting some instances in a single Availability Zone in the US-
EAST-1 Region” as of 3:13 PM PDT on Thursday, May 31.

A 3:42 PM update confirmed “an issue in one of the datacenters that
makes up one of US-EAST-1 Availability Zones. This was a result of a
power event impacting a small percentage of the physical servers in that

datacenter as well as some of the networking devices.”
e —

Elastic Compute Cloud (EC2)

|

| T

T

Elastic Block Store (EBS)

Elastic Compute Cloud (EC2)

/

EBS Clusterla EBS Cluster28

VMI

VM2

VM3

VM4 |

EBS Clusterla

EBS CIusterZ@

VM1

VM2

i

VMI

VM3

i

VMI

VM2

o

VM3

VM4 |

i

EBS Cluste EBS Cluster28

VMI

VM2

VM3

VM4 |

EBS Cluste

EBS Cluster28

VM4 |

EBS Cluste

EBS Cluster28

Correlated failures resulting from
deep dependencies

N

EBS Clusterd " EBS Cluster? '

a

Correlated Failures

- Correlated failures are harmful and epidemic:

- Propagated to all the redundant instances
- Undermine redundancy and fault tolerance efforts

Correlated failures are prevalen

Why Does the Cloud Stop Computing?

t

G
EV
A\

fra
ex

AWS Database Blog

Amazon Aurora under the hood: quorums and correlated failure

Amazon Aurora*, Aurora, Database*, MySQL Compatible*, PostgreSQL Compatible* | Permalink | @ Comments
7 Share

Anurag Gupta runs a number of AWS database services, including Amazon Aurora, which he helped design. In this Under the Hood
series, Anurag discusses the design considerations and technology underpinning Aurora.

Amazon Aurora storage is a highly distributed system that needs to meet the stringent performance, availability, and durability
requirements of a high-end relational database. This post is the first of a four-part series that covers some of the key elements of ou
design.

There isn't a lot of publicly available material discussing tradeoffs in real-world durability, availability, and performance at scale.
Although this series is based on the considerations involved in designing a transactional database, | believe it should be relevant to
anyone architecting systems involving the coordination of mutable distributed state.

th

ir core network. A
bd about 90

pver to the

/S to improve their
bre immediately

Suppose you have a clustered pair of servers and each is ¢
pair? "Obviously," 99.99%.

nouned o1 me outage by our moniormg toors and were m constant conact wit
the outage working to resolve as quickly as possible.

ensure maximum uptime for our customers!

Here is the incident report from Rackspace if you want the techy details:

Rackspace during

REW apologizes for this outage; we promise that we are putting Rackspace's feet to the fire to

isues, we find

multaneously
eir existence

[CS

11N -

State of the Art

@

Service
initialization

Service Runtime——————

State of the Art

Post-Failure Forensics

1. Diagnosis (e.g., Sherlock [SIGCOMM'07])

2. Accountability (e.g., AVM [OSDI'10])
3. Provenance (e.g., DiffProv [SIGCOMM’16])

Service
initialization

Service Runtime——————

Proactive Auditing

1. INDaas [OSDI’'14]

2
3

.reCloud [CONEXT'16]

. RepAudit [OOPSLA'17]

Service
initialization

State of the Art

Service Runtime—

Proactive Auditing

- They did pre-deployment recommendations:

Server4 (S4)
HDFS HDFS 172.28.228.24

i
Server3 (S3)
172.28.228.23

Server1 (S1)
172.28.228.21

Ggg SwitchD Agg Switch2) Ggg Switch3 10.0.0.3
(Agg1) (Agg2) (Agg3) o
10001 \ /10002 Service Deployment
Co;g g;t;t)eﬂ) COEEC 5&“2")9’2 (network/software stacks)

75.142.33.98 i i 75.142.33.99

Proactive Auditing

- They did pre-deployment recommendations:
- Step1: Automatically collecting dependency data

SW : HBase HBase :
Server4 (S4)

I HDFS HDFS I 172.28.228.24

I- = e g B)E E E = = = I '
Server1 (S1)) ’ - - - - E’ - -
172.1;3. 831 P8P8 i
Server3 (S3)
1 172.28.228.23
|

2 Agg SwitchD Agg Switch2) Agg Switch3 10.0.0.3
Net . (Agg1) (Agg2) (Agg3) N
; 10.0.2.1 \R 1/ 10.0.0.2 o : Serwce Deployment
| ore Router ore Router
. (Core1)) (Core2) netwo;k/software stacks)
1

75.142.33.98 75.142.33.99
----------- -IH ----------l

Proactive Auditing

- They did pre-deployment recommendations:

- Step1: Automatically collecting dependency data
- Step2: Modeling system stack in fault graph

Server4 (S4)
HDFS HDFS 172.28.228.24

i
Server3 (S3)
172.28.228.23

Agg Switch1) Agg Switch2) Agg Switch3 10.0.0.3
(Agg1) (Agg2) (Agg3)

10001 \ /10002 Service Deployment

Core Router1 Core Router2
(network/software stack
(Core1)) (Core2) etwork/software stacks)

75.142.33.98 i i 75.142.33.99

Server1 (S1)
172.28.228.21

Proactive Auditing

- They did pre-deployment recommendations:

- Ste
- Ste
- Ste

01: Automatically collecting dependency data
02: Modeling system stack in fault graph

n03: Evaluating alternative deployments’independence
HBase HBase
HDFS HDFS a2
> >
A T
Server3 (S3)

172.28.228.23

Agg Switch2 Agg Switch3 10.0.0.3
(Agg2) (Agg3) "'

Service Deployment
(network/software stacks)

Core Router2
(Core2)

75.142.33.99

75.128

Redundancy configuration fails

Redundancy configuration fails

o

v

Server 1 fails

A

AND gate: all the
sublayer nodes fail, the
upper layer node fails

v

Server 2 fails

Redundancy configuration fails

v

Server 1 fails

v

HW fails

Net fails

v

SW fails

v
Server 2 fails

v
------------- > ?
4 \ 4
Net fails SW fails || HW fails

OR gate: one of the sublayer nodes fails,
the upper layer node fails

Redundancy configuration fails

o

L 4 4
Server 1 fails Server 2 fails
é v
/ v ./ ? v
HW fails Net fails SW fails Net fails SW fails || HW fails
! é | v
v ¥
HBase HDFS
v v

Redundancy configuration fails

o

L 4 4
Server 1 fails Server 2 fails
é v
/ v ./ ? v
HW fails Net fails SW fails Net fails SW fails || HW fails
\ ' 6 I ' | v
4 4 4
Path1 HBase HDFS
v v
P
Agq1 Corel

Proactive Auditing

1. INDaas [OSDI’'14]

2
3

.reCloud [CONEXT'16]

. RepAudit [OOPSLA'17]

Service
initialization

State of the Art

Service Runtime—

Correlated Failure Risks in Updates

Google Outage in Eastern U.S. Affecting Gmail, YouTube, and More

By Lawrence Abrams
Prn:\r'l-iun Anditinm | v

1.t Azure global outag

>* mangled domain re

4. .

Benjamin Treynor Sloss, Google's VP of
engineering, explained that the root cause

St o , —
e | = i of last Sunday's outage was a
" el configuration|change for a small group of |
i N SCR, | | servers in one region being wrongly

applied to a larger number of servers
across several neighboring regions.

AN X -

crosoft Azure and Office 365 downed by DNS configuration blunder

Problem 1: Inefficient Auditing in Updates

Proactive Auditing O(50) hours per auditing
V.S.
1. INDaas [OSDI"14] One update every 3 hours

2
3

.reCloud [CONEXT'16]

. RepAudit [OOPSLA'17]

Service Changing Upgrading software
initialization network paths components

Service Runtime——————

Problem 2: Lack of fixing risks

Proactive Auditing

1. INDaas [OSDI’'14]

2
3

.reCloud [CONEXT'16]

. RepAudit [OOPSLA'17]

. Fix ?
\FN

Service
initialization

Changing Upgrading software
network paths components

Service Runtime——————

Our Contribution

CloudCanary

J ™\

Fast Audit & Fix

S

Service Changing Upgrading software
initialization network paths components

Service Runtime——————

CloudCanary’s Workflow

Updated
Service Snapshot

Operator

CloudCanary’s Workflow

Updated

Service Snapshot
1 --- o | Dependency acquisition
-0 | and
1 - o | Fault graph generator

.

hd

Operator

CloudCanary’s Workflow

Updated
Service Snapshot]
|
1 --- o | Dependency acquisition &
[ITETC) . and > 1
1 --- o | Fault graph generator A A
— 1 L [

Fault Graph

.

hd

Operator

CloudCanary’s Workflow

Updated
Service Snapshot]
|
1 - o | Dependency acquisition [
[ITTESE)] R and > 1
1 --- o | Fault graph generator A A
- 1 [[
Fault Graph
1. {CoreRouter-1}
2. {Agg1, Agg2}
f\ — SnapAudit
Operator

« Challenge 1: SnapAudit

CloudCanary’s Workflow

Updated
Service Snapshot
|
izl Dependency acquisition (o]
HE —_— and > 11 | |
4 Fault graph generator A A
1 [[
Fault Graph
1. {CoreRouter-1}
2. {Agg1, Agg2}
N ~——— SnapAudit
@, Reliability Goal
() - > DepBooster
Operator Improvement Plans

« Challenge 1: SnapAudit
 Challenge 2: DepBooster

CIoudCanary s Workflow

Updated CloudCanary
Service Snapshot —]
|
Dependency acquisition [
—-—> and » 1L]
Fault graph generator A A
O s A
Fault Graph
1. {CoreRouter-1}
: 2. {Agg1, Agg2}
BN ~—— SnapAudit
@, : Reliability Goal
() = > DepBooster
Operator - Improvement Plans

-Challenge 1: SnapAudit
 Challenge 2: DepBooster

A Fault Graph

Redundancy Deployment

a

A1 A2 A3

Risk Groups in Fault Graphs

Redundancy Deployment

- A risk group means a set of leaf nodes whose
simultaneous failures lead to the failure of root node

Risk Groups in Fault Graphs

Redundancy Deployment

- A risk group means a set of leaf nodes whose
simultaneous failures lead to the failure of root node
{A2} and {A1, A3} are risk groups
{A1} or {A3}is not risk group

Risk Groups in Fault Graphs

Redundancy Deployment

{
N

ldentifying correlated failure risks can be reduced to
the problem of finding risk groups in the fault graph.

However, analyzing risk groups is

NP-complete problem

DITTTUUIGWUTIIINGO UV WY TUITITTUTIN WG T\CUNWU LWV LUTTWG TUITITUVTGC VI T VUV TV

{A2} and {A1, A3} are risk groups
{A1} or {A3}is not risk group

CIoudCanary s Workflow

Updated CloudCanary
Service Snapahot]
|
Dependency acquisition [
—-—> and » 1L]
Fault graph generator A A
1 [[
Fault Graph
1. {CoreRouter-1}
= |2.{Agg1, Agg2}
(N < """ SnapAudit
@, : Reliability Goal
() = > DepBooster
Operator - Improvement Plans

-Challenge 1: SnapAudit
« Challenge 2: DepBooster

The Insight of SnapAudit

S SI SII

«— A is small —|« A’is small »|[«— A" is small

Service Changing Upgrading software
initialization network paths components

Service Runtime——————

The Insight of SnapAudit

CloudCanary
FirstV

S SI SII

«— A is small —|« A’is small »|[«— A" is small

Service Changing Upgrading software
initialization network paths components

Service Runtime——————

The Insight of SnapAudit

CloudCanary
FirstAudit —~ TN
IncAudit IncAudit IncAudit
! v
S SI SII \

«— A is small —|« A’is small »|[«— A" is small

Service Changing Upgrading software
initialization network paths components

Service Runtime——————

SnapAudit: FirstAudit & IncAudit

CloudCanary
i)
- IncAudit IncAudit IncAudit
| v
S SI SII \

«— A is small —|« A’is small »|[«— A" is small

Service Changing Upgrading software
initialization network paths components

Service Runtime——————

FirstAudit Primitive

H(F)=x31g

FirstAudit Primitive

H(R)=aed8

H(D)=43cd

H(E)=a4vo

H(Z)=lktd

!
H(X)=xbn7 X
v

H(Y)=bbk9

H(F)=x31g

FirstAudit Primitive

H(R)=aed8

H(D)=43cd

H(E)=a4vo

H(Z)=lktd

!
H(X)=xbn7 X
v

H(Y)=bbk9

FirstAudit Primitive

H(R)=aed8

H(F)=x31g
H(D)=43cd

- {A}

- {B}

H(E)=a4vo

H(Z)=lktd

!
H(X)=xbn7 X
v

H(Y)=bbk9

H(R)=aed8

H(E)=a4vo

H(F)=x31g
- {A’ B}
-{A, C}
- {B’ B}
-{B, C}
H(D)=43cd
- {A}
- {B}

FirstAudit Primitive

H(Z)=lktd

!
H(X)=xbn7 X
v

H(Y)=bbk9

H(R)=aed8

H(E)=a4vo

H(F)=x31g
- {A’ B}
-{A, C}
- {B’ B}
-{B, C}
H(D)=43cd
- {A}
- {B}

FirstAudit Primitive

H(Z)=lktd

!
H(X)=xbn7 X
v

H(Y)=bbk9

H(R)=aed8

H(E)=a4vo

H(F)=x31g
- {A’ B}
-{A, C}
- {B}
-{B, C}
H(D)=43cd
- {A}
- {B}

FirstAudit Primitive

H(Z)=lktd

!
H(X)=xbn7 X
v

H(Y)=bbk9

H(R)=aed8

H(E)=a4vo

H(F)=x31g
- {A; B}
-{A, C}
- {B}
- {B’ G}
H(D)=43cd
- {A}
- {B}

FirstAudit Primitive

H(Z)=lktd

!
H(X)=xbn7 X
v

H(Y)=bbk9

H(R)=aed8

H(E)=a4vo

H(F)=x31g
- {B}
-{A, C}
- {B}
- {B}
H(D)=43cd
-{A}
- {B}

FirstAudit Primitive

H(Z)=lktd

!
H(X)=xbn7 X
v

H(Y)=bbk9

H(F)=x31g

-{B}

-{A, C}

H(D)=43cd

-{A}
-{B}

R H(R)=aed8
H(Z)=Iktd
H(E)=a4vo
H(X)=xbn7 X Y
v v H(Y)=bbk9

FirstAudit Primitive

H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

-{A}
-{B}

R H(R)=aed8
H(Z)=lktd
H(E)=a4vo
H(X)=xbn7 X Y
] EQ?T} v v H(Y)=bbk9
........... o
-{A,S}

FirstAudit Primitive

H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

-{A}
-{B}

R H(R)=aed8

H(Z)=lktd

- {A}

- {K}

H(E)=a4vo -{S, T
H(X)=xbn7 X Y
:EQ?T} v v H(Y)=bbk9
........... oo
- {A,S}

FirstAudit Primitive

H(F)=x31g

H(R)=aed8
R 1w
I R
-{B)
A &

- {B}
-{A, C}
H(D)=43cd
-{A}
- {B}

H(E)=a4vo

FirstAudit Primitive

H(Z)=lktd

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}
-{S,T}

H(Y)=bbk9

o
-{A.S}

SnapAudit: FirstAudit & IncAudit

CloudCanary
FirstAudit
IncAudit IncAudit IncAudit
S SI SII

«— A is small —|« A’is small »|[«— A" is small

Service Changing Upgrading software
initialization network paths components

Service Runtime——————

Our Insight

» Algorithm sketch:
- Finding all the border nodes (black nodes)
- Computing their risk groups
- Merging these risk groups towards root

H(F)=x31g

H(R)=aed8
R 1w
I R (Y
-{B)
A L&

- {B}
-{A, C}
H(D)=43cd
-{A}
- {B}

H(E)=a4vo

Original Deployment

H(Z)=lktd

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}
-{S,T}

H(Y)=bbk9

o
-{A.S}

H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

-{A}
-{B}

Updated Deployment

H(R)=aed8

R 1w
I R (Y

-{B)
A &

H(E)=a4vo

H(Z)=lktd

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}

-{S,T}

H(Y)=bbk9

o
-{A.S}

H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

-{A}
-{B}

Updated Deployment

H(R)=aed8

R w
I R (Y

-{B)
A &

H(E)=a4vo

H(Z)=2xzb

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}

-{S,T}

H(Y)=bbk9

o
-{A.S}

H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

-{A}
-{B}

Updated Deployment

H(R)=45z¢c

R 1w
I R (Y

-{B)
A &

H(E)=a4vo

H(Z)=2xzb

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}

-{S,T}

H(Y)=bbk9

o
-{A.S}

Step 1: Find Border Nodes

N |H(R)=45z¢c
4“' -{A} Border Nodes

- {K}
H(F)=x31g - {B}
- {B} n - {S’ T} /
- {A, C}

l H(Z)=2xzb
F (A}
v - {K}
H(E)=a4vo
ﬂ |-®

H(D)=43cd -{S, T}
- {A} *
- {B} l l -{C} l
D E H(X)=xbn7 Y
v v] EQ?T} v H(Y)=bbk9
A A """ - (<}
- {A,S}

A B B C

Step 2: Q’s Risk Groups

N |H(R)=45z¢c
4“' -{A} Border Nodes

- {K}
H(F)=x31g - {B}
- {B} n - {S’ T} /
- {A, C}

l H(Z)=2xzb
F (A}
v - {K}
H(E)=a4vo
ﬂ |-®

H(D)=43cd -{S, T}
- {A} *
- {B} l l -{C} l
D E H(X)=xbn7 Y
v v] EQ?T} v H(Y)=bbk9
A A """ - (<}
- {A,S}

A B B C

Our Insight

Redundancy Deployment

v

v

Y

Data Source E1

Data Source E2

A

Y

o

A2

A3

Boolean formula
= E/AE>

= (AIVA2)A(A2VA3)

Our Insight

Redundancy Deployment

v

v

Y

Data Source E1

Data Source E2

o

A2

+

Satisfying assignment:

+

{A1=1, A2=0, A3=1}

>

@

Boolean formula
= E/AE>

= (AIVA2)A(A2VA3)

v

[SAT solverJ

Our Insight

e Problem:

- Standard SAT solver outputs an arbitrary satisfying
assignment

Our Insight

» Problem:
- Standard SAT solver outputs an arbitrary satisfying
assignment
- What we want is top-k critical (minimal) risk groups

< ¢«)

ldentifying Risk Groups

e Using MinCostSAT solver
- Satisfiable assignment with the least weights

- Obtaintheleast C=) ci-w;
- Very fast with 100% accuracy

ldentifying Risk Groups

e Using MinCostSAT solver
- Satisfiable assignment with the least weights

- Obtaintheleast C=) ci-w;
- Very fast with 100% accuracy

We set the values of all the leaf nodes (i.e., W;) as 1

ldentifying Risk Groups

e Using MinCostSAT solver
- Satisfiable assignment with the least weights

- Obtaintheleast C=) ci-w;
- Very fast with 100% accuracy

Redundancy Deployment A1 A2 A3 Weight

y 1 0 0
0 1 0 1

; ? 0 0 1
Data Source E1 Data Source E2 1] 0 5
ﬁ é 1 0 1 2

Y Y Y

A1 A2 A3 8 2) ;I) 2
1 1 1 1 1 1 3

ldentifying Risk Groups

e Using MinCostSAT solver
- Satisfiable assignment with the least weights

- Obtaintheleast C=) ci-w;

- Very fast with 100% accuracy

Redundancy Deployment

v

v Y

Data Source E1

Data Source E2

o0

O E
A2 A3
1

A1 A2 A3 Weight

J J

0 0 1

1 1 0 2

1 0 1 2

0 1 1 2

0 0 0

1 1 1

ldentifying Risk Groups

 Find out the top-k critical risk groups

- Use a A to connect the current formula and the
negation of the resulting assignment

(AIVA2)A(A2VA3) A (1A A A2 A DA3)

Step 2: Q’s Risk Groups

H(R)=45z¢c

-{A}
- 1K}
-{B}
-{S, T}

H(E)=a4vo

H(F)=x31g
- {B}
-{A, C}
H(D)=43cd
-{A}
- {B}

H(Z)=2xzb

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}

-{S,T}

H(Y)=bbk9

o
-{A.S}

H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

-{A}
-{B}

Step 2: Q’s Risk Groups

H(R)=45z¢c

R 1w
I R (Y

-{B)
A &

H(E)=a4vo

H(Z)=2xzb

-{A}
- 1K}
-{S, T}

H(X)=xbn7

-{A}

-{S,T}

!
Y
v

H(Y)=bbk9

o
-{A.S}

Step 3: Merging Changed Caches

H(R)=45zc
R - {A}
I R (Y
H(F)=x31g - {B}
- {B) ﬂ il
“A G l H(Z)=2xzb
F (A
v - {K}
H(D)=43cd H(E)=a4vo (S, T)
a
- {B} l
H(X)=xbn7 Y
: EQ?T} v H(Y)=bbk9

o
-{A.S}

Step 3: Merging Changed Caches

H(R)=45zc
R 1
I R
H(F)=x31g - {B}
- {B) ﬂ &
-{A, C) I
F .
v
H(D)=43cd H(E)=a4vo
w0 %
-{B}
H(X)=xbn7
-{A} -
(ST H(Y)=bbk9
-{K}
-{A.S)

Step 3: Merging Changed Caches

H(R)=45zc
R 1
I R
H(F)=x31g - {B}
- {B) ﬂ &
-{A, C) I
F .
v
H(D)=43cd H(E)=a4vo
w0 %
-{B}
H(X)=xbn7
-{A} -
(ST H(Y)=bbk9
-{K}
-{A.S)

Step 3: Merging Changed Caches

H(F)=x31g

-{B}
-{A, C}

H(D)=43cd

H(E)=a4vo

-{A}
-{B}

H(X)=xbn7

-{A}
-{S,T}

H(Y)=bbk9

o
-{A.S}

CIoudCanary s Workflow

Updated CloudCanary
Service Snapshot]
|
Dependency acquisition [
—-—> and » 1L]
Fault graph generator A A
1 [[
Fault Graph
1. {CoreRouter-1}
:|2.{Agg1, Agg?}
(N < """ SnapAudit
@, i Reliability Goal
() = > DepBooster
Operator Improvement Plans

Challenge 1: SnapAudit
« Challenge 2: DepBooster

Correlated Failure Risk Repairing

HBase HBase
Server4 (S4)
HDFS HDFS 172.28.228.24

Server2 (S2)
172. 28 228.22

Server1 (S1)
172.28. 228 21
Agg Switch1 Adgg SW|tch2
(Agg1) (Agg2)

10.Q49" 10.0.0.2

Server3 (S3)
172.28.228.23

Agg Switch3

(Agg3) 10.0.0.3

Core Router2
(Core2)

75.142.33.99

Core Router1
(Core1)

.33.98

75.

Correlated Failure Risk Repairing

HBase HBase

Server4 (S4)

HDFS | HDFS .228.24 SPeCiﬁ Cation:

?%%232821 T72.28.226.23 $Server —> 172.28.228.21, 172.28.228.22
t AagSWICh3), goal(failProb(ft)<0.08 | ChNode | Agg3)

10.049° 10.0.0.2
Core Router1 Core Router2
(Core1) (Core2)
75.1%2.33.98 75.142.33.99

Correlated Failure Risk Repairing

HBase HBase

Server4 (S4)

=] Specification:

?%”29832821 729832 21 $Server —> 172.28.228.21, 172.28.2238.2
t A SWICIZ) goal(failProb(ft)<0.08 | ChNode | Agg3)

10.049° 10.0.0.2
Core Router1 Core Router2
(Core1) (Core2)
75.1%2.33.98 75.142.33.99

Correlated Failure Risk Repairing

HBase HBase

Server4 (S4)

HDFS | HDFS .228.24 SPeCiﬁ Cation:

729832 21 $Server —> 172.28.228.21, 172.28.228.22
aggswiens),, . goal(failProb(ft)<0.08 | ChNode | Agg3)

(Agg3)

Server1 S1
172.28. 228 21

(
10.048° 10.0.0.2
[Core Router1] Core Router2
(Core1) (Core2)
75.7%2.33.98 75.142.33.99 -\ /-

[DepBooster J

v

Plan 1: Move replica from S1 —> 5S4
Plan 2: Move replica from S2 —> 5S4

Correlated Failure Risk Repairing

] []

HBase HBase

HDFS HDFS 1S7e2r.v2%r'£212(88';12 S P eC iﬁ Cati O n o
r

Server1 (S1)
172.28.228.21

Server3 (S3)
172.28.228.23

$Server —> 172.28.228.21, 172.28.228.22
oo goal(failProb(ft)<@.08 | ChNode | Agg3)

Cozecg:zlit)erz v
4 . \/
Synthesis L DepBooster J

v

\\ // \\ Plan 1: Move replica from S1 —> 5S4
Plan 2: Move replica from S2 —> 5S4

gg Switch2
(Agg2)

Correlated Failure Risk Repairing

] []

HBase HBase

HDFS HDFS 1S7e2r.v2%r'£212(88';12 S P eC iﬁ Cati O n o
r

Server1 (S1)
172.28.228.21

Server3 (S3)
172.28.228.23

$Server —> 172.28.228.21, 172.28.228.22
oo goal(failProb(ft)<@.08 | ChNode | Agg3)

Cozecg:zlit)erz v
4 . \/
Synthesis L DepBooster J

\\ // \\ Plan 1: Move replica from S1 —> 5S4
//,//WPlan 2: Move replica from S2 —> S4
- _/

gg Switch2
(Agg2)

CIoudCanary s Workflow

Updated CloudCanary
Service Snapshot]
|
Dependency acquisition [
—-—> and » 1L]
Fault graph generator A A
1 [[
Fault Graph
1. {CoreRouter-1}
:|2.{Agg1, Agg?}
(N < """ SnapAudit
@, : Reliability Goal
() = > DepBooster
Operator Improvement Plans

Challenge 1: SnapAudit
 Challenge 2: DepBooster

Evaluation

- Comparing CloudCanary with the state of the art

- Evaluating CloudCanary’s practicality via real dataset

Evaluation

- Accuracy Efficiency Improvement
INEEL
[OSDI’14]
ProbINDaaS
[OSDI’14]

reCloud
[CoONEXT’16]

CloudCanary

RepAudit
[OOPSLA’17]

Efficiency Comparison

Auditing Time (hours)

01 2 8 16 64 01240 2 816 0101 20 120 1 2

8 16

INDaa$| | %

ProbiNDaaS (10°)| |

T X S
ReCloud (10) e
RepAudit . e
CloudCanary

~8 hours

so s1 .s2 sS3S4 S5
UpdateSnap?

hots

l

> 16 hours

Cx o ox % —
X % %
B .

Accuracy V.S. Efficiency

. 20,608 switches; 524,288 servers; 638,592 software components
- Auditing a random update affecting 20% components

100 X O ¥*— INDaa$S

—— :

CloudCanary 5% 5
K |

O B0 b A
© ' :

B 40 b sl
< S . . E

I %

i 2 478 16 32 2567 1024 409

Turnaround time (mutes)
RepAudit |

reCloud (107 rounds) ProbINDaaS (107 rounds)

Our approach is 200x faster than state-of-
the-arts, and offers 100% accurate results.

] S e e S O 4— INDaa$S
— ' ' ' ' ' ' ' l l
CloudCanary 5% 5 o
X |
O B0 bl P SN A
© | |
=0 OO TR SO0 SO0 O O N <A S i
< |
D0 |- rreed e b g A ?

1 2 478 16 32 256/ 1024 469§
Turnaround time (m#iutes)

RepAudit

reCloud (107 rounds) ProbINDaaS (107 rounds)

Evaluation

- We evaluated CloudCanary via real update trace:

o
Num

Microservices

e --

Conclusion

- CloudCanary is the first system for real-time auditing
- SnapAudit primitive: Quickly auditing update snapshot
- DepBooster: Quickly generating improvement plans

- We evaluated CloudCanary with real trace and large-
scale emulations

Thanks, questions?

- CloudCanary is the first system for real-time auditing
- SnapAudit primitive: Quickly auditing update snapshot
- DepBooster: Quickly generating improvement plans

- We evaluated CloudCanary with real trace and large-
scale emulations

