
1

FileMR: Rethinking RDMA Networking for
Scalable Persistent Memory

Jian Yang (UC San Diego)

Joseph Izraelevitz (University of Colorado, Boulder)

Steven Swanson (UC San Diego)

2

Cache

Register

CPU

DRAMMemory

CacheCache

Persistent memory and RDMA

Volatile

SSD

HDDStorage
Persistence

iSCSI

Block

Access

Byte

Addressable

PM
• PCM, STT-RAM, 3DXPoint

• Co-locate with DRAM

• Higher density than DRAM

• Byte-addressable: load/store

Fast, fine-grained persistence

Persistent Memory (PM, aka. SCM, NVMM)

CPU

DRAM PM

0.3ns

15ns

100ns

300ns

50us

>1ms

>100us

Read
Latency

RNIC RNIC

App App

PM

• DMA access across nodes

• One-sided (read/write)

Fast, fine-grained remote access

Remote Direct Memory Access (RDMA)

3

• RDMA on PM != Fast, fine-grained persistent remote access

Throughput (kiops) of random 4KB RDMA writes on PM (Optane)

• Other issues: allocations, protection, naming …

Persistent memory and RDMA

0

300

600

900

2MB 16MB 128MB 1GB 8GB 64GB 512GB

Region Size

-60%

4

PM: memory management

OS

Userspace

Application

PM-Aware File System

Hardware

Persistent Memory

POSIX IO

fd=open(f)
buf=mmap(fd)

mapped files

Memory mapped IO

*buf=42

Physical Address

File Extents

(KVirt Address)

C
o

n
tr

o
l P

a
th

D
a

ta
P

a
th

UserVirt Address

Direct Access (DAX)

GC, Compaction

5

RDMA memory management

OS

Userspace

Application

RDMA Driver

Memory Region

mr=ibv_reg_mr()
//mr.rkey=42

C
o

n
tr

o
l P

a
th

OS

Userspace

Application

Work Request

wr.rdma.raddr=0
wr.rdma.rkey=42
ibv_post_send()D

a
ta

P
a

th

Physical Address

Page Table

UserVirt Address

RNIC Driver

Hardware

PM

Hardware

RNICRNIC

6

RDMA Driver

KernelFile System

Application

Hardware

RDMA on PM

inode

RNIC

fd = open(/mnt/file)
p = mmap(…, fd, …)
RDMA connection setup
ibv_reg_mr(pd, p, …)
incoming writes from a remote node
< ibv_post_send(…, wr{RDMA_WRITE, addr,…})

Virtual address space

Extents

Mem Translate Table

Populating mapping in TBs

Preventing VM layout update

Performance degradation

File

RDMA_Write

• Virtual memory related issues:
– Linux VM subsystem was not designed for the

usage of PM, optimizations require remapping

– RDMA is not designed for large, long-term
memory

• Issues discussed in paper:
– Security, naming, isolation, connection

management, replication, persistence, multicast

7

Alternative approaches to VM issues on RDMA

Indirection:
– Existing interfaces (e.g. POSIX IO) as indirection

– E.g., Octopus, Orion, RDMA key-value stores

– No userspace direct access
ATC 17 FAST19

Holistic Design:

– Co-design PM management software and RDMA

networking

– VM mitigation: PUD(1GB) pages, data structure

– E.g., PASTE, Mojim, Hotpot, LITE, librpmem

– Require dedicate APIs and application redesign

NSDI 18 ASPLOS 15 SOCC 15 SOSP 17

NIC Pagefault:

– Using on-demand paging (IO page faults)

– MR registration is O(1)

– #IOPF is expensive (300+µs on mlx5)

Physical address on wire:

– No translation needed

– MR registration is O(1), no translation

– Security issues

8

Conflicting roles of metadata management

PM-aware file system RDMA

Allocation

Permission

Naming

Append

Defragmentation

Persistent

Translation

Remote Access

Translation

Overlapping

Conflicting

9

FileMR: File-based memory region

• File-based memory region

– New type of memory region: FileMR

– File system/PM Library maintains the

metadata of the MR

– File system initiates translation update

• Decoupled with VM (file offset)

• FS-managed protection / naming

KernelFile System

Application

Hardware

File System

File

PM

RNIC Driver

FileMR

open()

bind()

write()

Extents

Write WR

fd, fkey, offset, data

RNIC

RDMA Library

reg/unreg/invalidate/…

fd = open(/mnt/file)
RDMA connection setup
mr=ibv_reg_mr(pd, NULL, FILEMR)
ioctl(fd, FILEMR_BIND, mr.key, …)
incoming writes from a remote node
< ibv_post_send(…,wr{RDMA_WRITE,offset,…})

Data Sturcture

Component

Legend:

CtlPath

DataPath

10

Range-based memory translation table

• RDMA Append

– APPEND verb (write at MR.size)

– Pre-provision / IO pagefault

• “File system” is loosely defined

– Implements functions and callbacks

• Case study: libpmemlog
– libpmem manages extents in userspace

– Bypass kernel-space file system (devdax)

Hardware

libpmemlog-server

PM

ibv_reg_mr()

libpmemlog-client

RDMA Context

PM

Data Sturcture

Component

Legend:

CtlPath

DataPath

RDMA Context

Extents MR

MR.size

wr.op = WR_APPEND
wr.size = 0 // hole
ibv_post_send(wr)

11

Range-based memory translation table

• RangeMTT: Range-based address translation

– Based on the design of range-based TLB[1]

– Reverse translation between file offset to physical address

– 4KB page-aligned, 32-bit addressing (16PB)

– B-tree structure

[1] Karakostas et al, Redundant Memory Mappings for Fast Access to Large Memories (ISCA 2015)

Range Table Entry

Base Size

63 32 31 1 0

PW

RTTRoot RTE RTE RTE RTE

RTE RTE RTE RTE

…

12

FileMR : Implementation

• Implement FileMR and RangeMTT on SoftRoCE (rxe)

– SoftRoCE is a software RNIC based on UDP

– Minor change throughout RDMA stack

– Added Filesystem RangeMTT API

– Using ioctl for bind API

• RNIC cache emulation
– Emulate MTT/RangeMTT cache on rxe
– 4096-entry 4-way set associative

• Limitations:

– No application-level end-to-end performance

– Higher latency than real RNICs

RDMA Verbs

Application

RangeMTT API

Bind/Destroy
Init/Update
Invalidate

RDMA Lib

File System

RNIC Driver

RNIC

RDMA Verbs

Verbs

OS

Userspace

Lookup Miss

Fault Callbacks

FileMR_Bind

RDMA Core

ioctl

RangeMTT_Fault

13

FileMR: Evaluation

• MR Registration time

– The registration time of FileMR is much less

(< 1%) than MR on file or shmem

• Log appending latency breakdown

– FileMR adds 53% overhead over libpmemlog
– HERD-RPC adds 192% overhead

14

RangeMTT: Evaluation

• FileMR+RangeMTT vs. Registered MR+MTT

– Registration time saving (1.8% ~ 86.2%)

– # MTT entries saving (0.03% ~ 97%) are less significant on fragmented files.

– FileMR has higher cache hit rate for all workloads. (Hot files stay in cache)

15

Conclusion

• Persistent memory provides byte-addressable memory accesses with

persistency.

• RDMA networking enables fine-grained remote memory accesses.

• PM and RDMA should allow user to access remote PM directly, however:

– PM and RDMA handle address translation in incompatible ways

– Both PM and RDMA provide allocation, naming and permission checks

– Existing user MR registration and address translation cause overhead

– Existing user MR prevents PM from updating file layouts

• FileMR: using files as RDMA memory regions

• RangeMTT: leveraging file contiguity and translate file extents

16

PM: memory management

OS

Userspace

Application

PM-Aware File System

Hardware

Persistent Memory

POSIX IO

fd=open(f)
buf=mmap(fd)

mapped files

Memory mapped IO

*buf=42

C
o

n
tr

o
l P

a
th

D
a

ta
P

a
th

• Allocation:

– File system managed

– Deferred: append

• Translation:

– Contiguity: file extents

– Dynamic: defragmentation (GC),

transparent huge pages

• Protection:

– File system managed (ACL)

• Naming:

– Persistent hierarchical files

– System-wide

17

RDMA memory management

…
mr=ibv_reg_mr()
//mr.rkey=42

• Allocation:

– Application managed (RDMA context)

• Translation:

– Part of virtual address translation

– Static: pinned pages

• Protection:

– Protection domain (PD)

• Naming:

– Implicit naming

– PD-wide

…
mr=ibv_reg_mr()
//mr.rkey=42

OS

Userspace

Application

RDMA Driver

Memory Region

mr=ibv_reg_mr()
//mr.rkey=42

C
o

n
tr

o
l P

a
th

OS

Userspace

Application

Work Request

wr.rdma.raddr=0
wr.rdma.rkey=42
ibv_post_send()D

a
ta

P
a

th

RNIC Driver

Hardware

PM

Hardware

RNICRNIC

