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Introduction

® Video streaming dominates Internet traffic
e Adaptive bitrate (ABR) is a key algorithm to optimize users’ quality of experience (QoE)

- decides the quality level of each video chunk to send

- primary goals: higher video quality, fewer stalls

- prior work: BBA [SIGCOMM '14], MPC [SIGCOMM '15], CS2P [SIGCOMM '16], Pensieve
[SIGCOMM '17], Oboe [SIGCOMM 18]
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-
Our research study on ABR algorithms

What does it take to create a learned ABR algorithm that robustly performs well over the WiIdJ
Internet?

® QOver the last year, we have streamed 38.6 years of video to 63,508 distinct users
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Takeaways

@ Confidence intervals in video streaming are bigger than expected

® A simple ABR algorithm performs better than expected

© Our way of outperforming existing schemes is learning in situ
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Puffer: a live streaming platform running a randomized experiment

Free live TV streaming website (puffer.stanford.edu)
Opened to public December 2018
More than 100,000 users today

® User sessions are randomized to different algorithms
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Google ad for “tv streaming”

Stream live TV online | No charge to watch
puffer.stanford.edu

Watch live U.S. TV channels (NBC, CBS, ABC, PBS,
FOX, Univision) in your browser.
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Press articles

Article  Talk Read
ek :
ol Puffer (TV service) - -
D — . Try ‘Puffer’: An Open-Source Free Live TV
WIKIPEDIA From Wikipedia, the free encyclopedia . N
R Streaming Service By Stanford
Puffer is an American over-the-top internet television 8y Marisha Priyadarshini - Janary 18, 2019

2019-07-21

9. & Puffer — Stream live TV in the browser (stanford.edu)

258 points by rowdyranga 3 months ago | hide | 51 comments

Stanford University Launches a
Streaming TV Service (for Science)

A research team at Stanford University launched the Puffer streaming service in a bid to
improve video streaming algorithms. While live, a computer will be taught how to design new
algorithms to reduce glitches and stalls while improving image quality.

— 3 d ” - )
Than‘f(’Stanford res@chers?&f‘ﬁjﬁer, a free and

open source live TV streaming gervice that uses Al
to improve video-streaming algorithms
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Puffer architecture

Bee)

prfe( VideoCIientU

Decoder/Encoder 1

VHF/UHF Antenna

Decoder/Encoder 2 Video Server

(ABR)

Decoder/Encoder 3

ATSC Demodulator

Francis Y. Yan (Stanford) February 26, 2020 8/25



Confidence intervals in video streaming are bigger than expected

e Existing ABR algorithms found benefits like 10%—-20% based on experiments lasting hours
or days between a few network nodes

e We found: 2 years of data per scheme are needed to measure 20% precision
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Confidence intervals in video streaming are bigger than expected

® Results on the day of Jan. 26, 2019, with 17 days of video streamed to 600 users
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Confidence intervals in video streaming are bigger than expected

® Results in the week starting from Jan. 26, 2019, streaming 42 days of video
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Confidence intervals in video streaming are bigger than expected

® Results in the month starting from Jan. 26, 2019, streaming 169 days of video

19 ~

23,212 streams
18.5 9 169 stream-days

Fugu
MPC-HM
16.5 BBA

Average SSIM (dB)
3
1

Pensieve

RobustMPC-HM

15 T T T T T T T 1
1.6 14 12 1 08 06 04 02 O

Time spent stalled (%)

Francis Y. Yan (Stanford) February 26, 2020 12 /25



Confidence intervals in video streaming are bigger than expected

® Results in an eight-month period after Jan. 26, 2019, streaming > 13 years of video
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Confidence intervals in video streaming are bigger than expected

e Need 2 years of video per scheme to

{ BBA

637,189 streams
13.1 stream-years

Pensieve
RobustMPC-HM

MPC-HM ’_{Egu
reliably measure a 20% difference 16.6 +
® Reason: Internet is way more noisy and ) 64 ]
heavy-tailed than we thought g
- Only 4% of the 637,189 streams had any stalls %,
- Distributions of throughputs and watch times E 162
are highly skewed
16
0.24
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.
BBA [SIGCOMM '14]

e BBA is a simple buffer-based ABR algorithm
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-
MPC-HM [SIGCOMM '15]

e MPC-HM predicts throughput using the harmonic mean (HM) of past throughputs

- assumes throughput can be modeled with HM
- assumes transmission time = predicted throughput x chunk size

[ Video Streaming }

Service
A
bitrate
selection
predicted (
Harmonic Mean | throughput
Throughput Predictor | | MPC Controller
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|
Pensieve [SIGCOMM '17]

® Pensieve learns an end-to-end ABR control

- requires network simulators as training environments
- assumes training in simulation generalizes to wild Internet

offline 1 online
training ' control

Video Streaming
Service

A

bitrate
selection

] update model
Network Simulator J

J ABR Controller
| (Neural Net)
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SSIM vs stalls
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Fugu uses classical model predictive control

® Fugu replaces the throughput predictor in MPC-HM with a transmission time predictor

offline : online
training ! control
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Fugu's transmission time predictor (TTP)

e Neural network predicts “how long would each chunk take?"
® Input:
- sizes and transmission times of past chunks

- size of a chunk to be transmitted (not a throughput predictor)
- low-level TCP statistics (min RTT, RTT, CWND, packets in flight, delivery rate)

e Qutput:
- probability distribution over transmission time (not a point estimate)
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|
Learning TTP in situ

® Training: supervised learning in situ (in place) on real data from deployment environment

- chunk-by-chunk series of each individual video stream
- chunk i: size, timestamp sent, timestamp acknowledged, TCP statistics right before sending

® | earning in situ does not replay throughput traces or require network simulators
- we don’t know how to faithfully simulate the Internet
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SSIM vs stalls
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SSIM vs stalls
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What happens if Pensieve is retrained on Puffer traces?
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Takeaways

@ Confidence intervals in video streaming are bigger than expected
- we need 2 years of data per scheme to measure 20% precision

® A simple ABR algorithm performs better than expected
- algorithms that make fewer assumptions are more general?

© Our way of outperforming existing schemes is learning in situ
- we don’t know how to faithfully simulate the Internet

e Puffer (puffer.stanford.edu) is an open research platform for
- ABR schemes, network and throughput prediction, congestion control

Thank You: Emily Marx, Puffer participants, NSF, Google, Huawei, VMware, Dropbox,
Facebook, Stanford Platform Lab
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