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Introduction

• Video streaming dominates Internet traffic
• Adaptive bitrate (ABR) is a key algorithm to optimize users’ quality of experience (QoE)

- decides the quality level of each video chunk to send
- primary goals: higher video quality, fewer stalls
- prior work: BBA [SIGCOMM ’14], MPC [SIGCOMM ’15], CS2P [SIGCOMM ’16], Pensieve

[SIGCOMM ’17], Oboe [SIGCOMM ’18]
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Our research study on ABR algorithms

What does it take to create a learned ABR algorithm that robustly performs well over the wild
Internet?

• Over the last year, we have streamed 38.6 years of video to 63,508 distinct users
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Takeaways

1 Confidence intervals in video streaming are bigger than expected

2 A simple ABR algorithm performs better than expected

3 Our way of outperforming existing schemes is learning in situ
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Puffer: a live streaming platform running a randomized experiment

• Free live TV streaming website (puffer.stanford.edu)

• Opened to public December 2018

• More than 100,000 users today

• User sessions are randomized to different algorithms
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Google ad for “tv streaming”
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Press articles
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Puffer architecture
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Confidence intervals in video streaming are bigger than expected

• Existing ABR algorithms found benefits like 10%–20% based on experiments lasting hours
or days between a few network nodes

• We found: 2 years of data per scheme are needed to measure 20% precision
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Confidence intervals in video streaming are bigger than expected

• Results on the day of Jan. 26, 2019, with 17 days of video streamed to 600 users
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Confidence intervals in video streaming are bigger than expected

• Results in the week starting from Jan. 26, 2019, streaming 42 days of video
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Confidence intervals in video streaming are bigger than expected

• Results in the month starting from Jan. 26, 2019, streaming 169 days of video
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Confidence intervals in video streaming are bigger than expected

• Results in an eight-month period after Jan. 26, 2019, streaming > 13 years of video
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Confidence intervals in video streaming are bigger than expected

• Need 2 years of video per scheme to
reliably measure a 20% difference

• Reason: Internet is way more noisy and
heavy-tailed than we thought

- Only 4% of the 637,189 streams had any stalls
- Distributions of throughputs and watch times

are highly skewed
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Takeaways
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BBA [SIGCOMM ’14]

• BBA is a simple buffer-based ABR algorithm
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MPC-HM [SIGCOMM ’15]

• MPC-HM predicts throughput using the harmonic mean (HM) of past throughputs

- assumes throughput can be modeled with HM
- assumes transmission time = predicted throughput × chunk size
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Pensieve [SIGCOMM ’17]

• Pensieve learns an end-to-end ABR control
- requires network simulators as training environments
- assumes training in simulation generalizes to wild Internet
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SSIM vs stalls

16

16.2

16.4

16.6

0.120.160.20.24

Av
er

ag
e 

SS
IM

 (d
B

)

Time spent stalled (%)

BBA

MPC-HM

Pensieve

RobustMPC-HMBet
te

r Q
oE

637,189 streams
13.1 stream-years

Francis Y. Yan (Stanford) February 26, 2020 19 / 25



Takeaways

1 Confidence intervals in video streaming are bigger than expected

2 A simple ABR algorithm performs better than expected

3 Our way of outperforming existing schemes is learning in situ

Francis Y. Yan (Stanford) February 26, 2020 20 / 25



Takeaways

1 Confidence intervals in video streaming are bigger than expected

2 A simple ABR algorithm performs better than expected

3 Our way of outperforming existing schemes is learning in situ

Francis Y. Yan (Stanford) February 26, 2020 20 / 25



Fugu uses classical model predictive control

• Fugu replaces the throughput predictor in MPC-HM with a transmission time predictor
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Fugu’s transmission time predictor (TTP)

• Neural network predicts “how long would each chunk take?”
• Input:

- sizes and transmission times of past chunks
- size of a chunk to be transmitted (not a throughput predictor)
- low-level TCP statistics (min RTT, RTT, CWND, packets in flight, delivery rate)

• Output:

- probability distribution over transmission time (not a point estimate)
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Learning TTP in situ

• Training: supervised learning in situ (in place) on real data from deployment environment

- chunk-by-chunk series of each individual video stream
- chunk i : size, timestamp sent, timestamp acknowledged, TCP statistics right before sending

• Learning in situ does not replay throughput traces or require network simulators

- we don’t know how to faithfully simulate the Internet
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SSIM vs stalls
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What happens if Pensieve is retrained on Puffer traces?

16.3

16.4

16.5

16.6

0.150.30.450.6

Av
er

ag
e 

SS
IM

 (d
B

)

Time spent stalled (%)

BBA

Pensieve Pensieve (Puffer traces)

Fugu

Bet
te

r Q
oE

244,028 streams
3.8 stream-years

Francis Y. Yan (Stanford) February 26, 2020 24 / 25



Takeaways

1 Confidence intervals in video streaming are bigger than expected

- we need 2 years of data per scheme to measure 20% precision

2 A simple ABR algorithm performs better than expected

- algorithms that make fewer assumptions are more general?

3 Our way of outperforming existing schemes is learning in situ

- we don’t know how to faithfully simulate the Internet

• Puffer (puffer.stanford.edu) is an open research platform for

- ABR schemes, network and throughput prediction, congestion control

Thank You: Emily Marx, Puffer participants, NSF, Google, Huawei, VMware, Dropbox,
Facebook, Stanford Platform Lab
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