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How Do Existing Approaches Perform?

e [Paxos: state-of-the-art
geo-replication protocol

Lowest Possible
Read Latency (ms)

Lowest Possible
Read Latency (ms)

200

1501

1001

50+

0

200

1501

1001

50+

1
1
1
""\
)
)
‘-"\
Smmmy
t---‘----
\)
‘\
=== EPaxos T
o 1 2 3 4 5 6 7 8 9
Storage Overhead Budget
i
]
I---
)
\)
Y
1
)
A Y
) [T E— R ———
=== EPaxos
0 100 200 300 400

Write Latency Budget (ms)



How Do Existing Approaches Perform?

e [Paxos: state-of-the-art
geo-replication protocol

e Compare with estimate of
theoretical lower bound
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How Do Existing Approaches Perform?
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Core problem:
Each site stores a




RS-Paxos

Lowering Cost with Erasure Codlng / Utility of

e [ach site stores 1/kth of the

data

e RS-Paxos: Paxos on
erasure-coded data
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RS-Paxos Limitations

e [wo-round writes
e Kk-site intersection between quorums




Recap of the Problem

e \NVantto spread data across DCs, but constraints that
Impose trade-offs

e State-of-the-art falls short of the optimal

e Use erasure coding — hurts latency
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Paxos Review

Paxos Made Moderately Complex

ROBBERT VAN RENESSE and DENIZ ALTINBUKEN, Cornell University

This article explains the full reconfigurable multidecree Paxos (or multi-Paxos) protocol. Paxos is by no
means a simple protocol, even though it is based on relatively simple invariants. We provide pseudocode
and explain it guided by invariants. We initially avoid optimizations that complicate comprehension. Next
we discuss liveness, list various optimizations that make the protocol practical, and present variants of the
protocol.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Syst-
ems—Network operating systems; D.4.5 [Operating Systems]: Reliability—Fault-tolerance

General Terms: Design, Reliability
Additional Key Words and Phrases: Replicated state machines, consensus, voting

ACM Reference Format:

Robbert van Renesse and Deniz Altinbuken. 2015. Paxos made moderately complex. ACM Comput. Surv. 47,
3, Article 42 (February 2015), 36 pages.

DOI: http://dx.doi.org/10.1145/2673577

1. INTRODUCTION

Paxos [Lamport 1998] is a protocol for state machine replication in an asynchronous
environment that admits crash failures. It is useful to consider the terms in this
sentence carefully:
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Paxos Review

e /-Phase writes: first become leader,




Paxos Review

e /-Phase writes: first become leader, then write




Quickly Executing 2-Phase Writes

e Step 1: faster Phase 1

o Flexible Paxos [OPODIS 16]): need Phase 1, 2 quorums to intersect
o Phase 1 quorums need not overlap
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Quickly Executing 2-Phase Writes

e Step 1: faster Phase 1

e Step 2: overlap latency cost of Phase 1 with Phase 2
o RPC Chains [NSDI'09]: start Phase 2 at a
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Pando: Near-Optimal Trade-off
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Write to All




Write to All, Wait for Quorum
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Write to All, Wait for Quorum

Rare Case Common Case




Achieving 1-Site Intersection

Rare Case Common Case

v2 a write
finished

@ — | Maybe
D
D
Lo

Read I




Achieving 1-Site Intersection

Rare Case Common Case

Maybe
a write

finished




Pando: Near-Optimal Trade-off
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See paper:
e (Correctness
e Bounding latency under conflicts




Evaluation: Proximity to Lower Bound
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Pando is Close to the Lower Bound
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Pando is Close to the Lower Bound

CDF across access sets
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Pando is Close to the Lower Bound

CDF across access sets
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e Cloud deployment confirms solver
latency estimates
e Up to 46% cost (S) savings




Conclusion
e Pando: linearizability across geo-distributed DCs
e Achieves a near-optimal read—write—storage trade-off

o Allow for erasure-code data to minimize cost
o Rethink how to use Paxos in the wide-area setting
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Deployment Latency
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Latency Under Conflicts
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Contributions of Each Technique

CDF across access sets
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Throughput
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Read Latency After Failure
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