Learning Relaxed Belady
for Content Delivery Network Caching

Zhenyu Song, Daniel S. Berger, Kai Li, Wyatt Lloyd

NSDI 2020

Microsoft

Research

ELLON
o Uy,
. S O
& %,
* s <
. g Y < E)
Y o = e <
s o 7
% - s
L & y 3 £
%, &
G e
v % peunst

CDN Caching Goal: Minimize WAN Traffic

Requests
Requests —
CITIIIIIIIIIIIIIID 10000 =0 P N> (SR, P
User Flt Edge cache Miss
& Wide Area Network (WAN)
Q ey traffic is expensive

miss bytes

Key metric byte miss ratio:

total bytes

Caching Remains Challenging

Heuristic-based algorithms (1965-): LRU, LRUK, GDSF, ARGC, ...
e Work well for some workloads, but work poorly for other

ML-based adaptation of heuristics (2017-): UCB, LeCAR, ...
e Also work well for some workloads, but poorly for others

Belady’s MIN algorithm (1966)

e Oracle: requires future knowledge

e Large gap in byte miss ratio between state-of-the-art and Belady:
e 20-40% on production traces

Introducing Learning Relaxed Belady (LRB)

New approach: mimic Belady using machine learning

General Overview of our Approach

(Past information Now
I
R || R R R R R ’I R
[Training data] [Cache }

! '

ML Eviction
architecture candidates

Challenge 1: Past Information

Training data

v

ML
architecture

Cache

'

J

Eviction
candidates

]

[What past information to use?]

More data improves training
but increases mem overhead

Challenge 2: Generate Online Training Data

(Past information

| |Now [What past information to use?]
R ‘I RI|R | RI|RI| R ll R

ST I """ l [Generate online training data?]

[Tra|n|ng data

EV|Ct|on
archltectu re candidates

Challenge 3: ML Architecture

(Past information
| |Now [What past information to use?]
R ‘I RI R/ RIRI| R ’l R
ST I """ l [Generate online training data?]
[Training data] [Cache } [What ML arChiteCture tO SeleCt?]
¢ ¢ Large design space:

o features, model, prediction
ML Eviction target, loss function
architecture candidates

Challenge 4: Eviction Candidates

(Past information
' 1 Now [What past information to use?]
R ‘I R R |- R R R ’| R
S == I —————— l [Generate online training data?]
[Training data] [Cache J [What ML architecture to select?]
¢ ¢ [How to select evict candidates?]

ML Eviction
architecture candidates

Challenge 5: Quickly Evaluate Design Decisions

(Past information
' Now [What past information to use?]
R ‘I R R |- R R R ’| R
S == I —————— l [Generate online training data?]
[Training data] [Cache J [What ML architecture to select?]
¢ ¢ [How to select evict candidates?]

ML l l Eviction .
[architecture candidates][End-to-end evaluation: days]

10

Solutions: Relaxed Belady Algorithm & Good Decision Ratio

What past information to use?

Generate online training data?

[Relaxed Belady algorithm]

What ML architecture to select?

How to select evict candidates?

End-to-end evaluation: days [Good decision ratio]

11

Solutions: Relaxed Belady Algorithm & Good Decision Ratio

[What past information to use?]

[Generate online training data?]

[Relaxed Belady algorithm]

[What ML architecture to select?]

[How to select evict candidates?]

[End-to-end evaluation: days] — [Good decision ratio: mins]

12

Solutions: Relaxed Belady Algorithm & Good Decision Ratio

[What past information to use?] B

[Generate online training data?]

> <_[Relaxed Belady algorithm]

[What ML architecture to select?]

[How to select evict candidates?] /

End-to-end evaluation: days — [Good decision ratio: mins]

13

Challenge: Hard to Mimic Belady (Oracle) Algorithm

Belady: evict object with next access farthest in the future

Cache _/

(now) | -----. —— —_— _——

DI Bl cereer e Al '-Cl
@ I__ I__ I__ I__ g

Time to next request

Evict

Mimicking exact Belady is impractical

e Need predictions for all objects — prohibitive computational cost
e Need exact prediction of next access — further prediction are harder

14

Introducing the Relaxed Belady Algorithm

Belady boundary Evict
Cache /

(now) | —— - T ;-AI ;-C-l
[c]lo]] == - ————

Time to next request

‘ Observation: many objects are good candidates for eviction ‘

Relaxed Belady evicts an objects beyond boundary
e Do not need predictions for all objects — reasonable computation
e No need to differentiate beyond boundary — simplifies the prediction

15

Good Decision Ratio: Directly Measures Eviction Decisions

Bad eviction decision Belady boundary Good eviction decision

evicted obj's next access < boundary

T~

evicted obj's next access > boundary

a— g

Time to next request

Insight: relaxed Belady enables evaluating eviction decisions

Good decision ratio:

good eviction decisions

total eviction decisions

16

Challenge 5: Quickly Evaluate Design Decisions

——————————— What past information to use?
(Past information \I Now [P]
I
R ‘| RIR/| RIIR| R ’| R [Generate online training data?]
I l [What ML architecture to select?]
[fraining data] [Cache J [How to select evict candidates?]

v '

[End-to-end evaluation: days]
ML Eviction
architecture candidates

17

Evaluate Design Decisions w/o Simulation

\
r =| Training data]

!

ML Evic;tion > Simulate once,
architecture candidates reuse for many designs

‘ Evaluate designs on log using good decision ratio in minutes

18

Challenge 1: Past Information

Training data

v

ML
architecture

Cache

'

J

Eviction
candidates

]

[What past information to use?]

More data improves training
but increases mem overhead

19

Track Objects within a Sliding Memory Window

Sliding memory window mimics Belady boundary

Only track objects within memory window

v

‘ Per object features ‘

Window size is LRB’s main hyperparameter

20

Challenge 2: Training Data

(Past information

| |Now [What past information to use?]
R ‘I RI|R | RI|RI| R ll R

ST I """ l [Generate online training data?]

[Tra|n|ng data

EV|Ct|on
archltectu re candidates

21

Sample Training Data & Label on Access or Boundary

Sliding memory window
___________ S Now

Ry R R |~ R|R|RR

‘ Per object features ‘

¢ Sample
‘ Unlabeled training data I_

Access Past memory window

\d \d
‘ Labeled training data

22

Challenge 3: ML Architecture

(Past information
| |Now [What past information to use?]
R ‘I R R |-~ RIRI|R ’l R
ST I """ l [Generate online training data?]
[Training data] [Cache } [What ML arChiteCture to SeleCt?]
¢ ¢ Large potential design space

ML Eviction
architecture candidates

23

Solution 3: Feature & Model Selection

Use good decision ratio to evaluate new designs

o N e
Features p) 6@6 . q\?}
\’

Obiject size

Object type

- Gradient boosting decision trees
Inter-request distances

(recency) Lightweight & high good decision ratio

Exponential decay counters
(long-term frequencies)

Training ~300 ms, prediction ~30 us ”

Challenge 4: Eviction Candidates

(Past information
' 1 Now [What past information to use?]
R ‘I R R |- R R R ’| R
S == I —————— l [Generate online training data?]
[Training data] [Cache J [What ML architecture to select?]
¢ ¢ [How to select evict candidates?]

ML Eviction
architecture candidates

25

Solution 4: Random Sampling for Eviction

|(Past information ‘Now
R M R|I|R /|- RIRI|R " R
Can mimic relaxed Belady if we can [Cache }
find 1 object beyond the boundary ¢
k=64 candidates; more does not improve Random k
good decision ratio candidates

26

Learning Relaxed Belady

Memory window

e e o _\Now
(
RyYyR||R||R| R R|R|R ' R
________________)
Label Sample *
0000000 | [Cache }
Unlabeled dataset EVict
Train - — / Samble
0000000 4>| AR .. @ ‘ ~ p
Labeled dataset Model Sredict Eviction
Candidates
0000

27

Implementation

e Simulator implementation
o LRB + 14 other algorithms

e Prototype implementation
o C++ on top of production system (Apache Traffic Server)
o Many optimizations

28

Evaluation Setup

e Q1: Learning Relaxed Belady (LRB) traffic reduction vs state-of-the-art
e Q2: overhead of LRB vs CDN production system

e Traces: 6 production traces from 3 CDNs

e Hyperparameter (memory window/model/...) tuned on 20% of trace

29

LRB Reduces WAN Traffic

Industry standard 20% traffic reduction over B-LRU
S 10% reduction over the best SOA
\
\Z 30%
o0 —— LRB (Ours)
O 20%;
c —=— LFUDA
% 10% - —— LRU4
§ Adaptive-TinyLFU
£ 0% : : ’ —— LeCaR
O
£ \\ o
© _10% | | | ﬂ B-LRU
= 64 128 256 512 1024 LRU

Log Cache Size (GB)

Wikipedia trace 30

LRB Consistently Improves on the State of the Art

Traffic Reduction to B-LRU

Traffic Reduction to B-LRU

—+— LRB (Ours) —— LFUDA —— LRU4 TinyLFU —— LeCaR --=+- B-LRU —— LRU
30% nj:’ 30% nj:’ 30%
o) o)
0% — T~ 2 20% 2 20%
: J/ 3
S S
10% 7\ S 10% 5 10% /_—__\
> =) o8
g 3 I
0% 0% T & 0% = A S —
.U .U
S 5
100 © _10° © _10°
10% 64 138 256 512 1024 ~=10%Gs 133 256 512 1024 ~=19%gs 138 256 512 1024
Log Cache Size (GB) Log Cache Size (GB) Log Cache Size (GB)
Wikipedia B CDN-A1 B CDN-A2
30% = 30% 2 30%
M e
20% S 20% S 20%
Wk = B 10% B 10% //
/ > 3
e 1 g
A — m—— E 0% R R — s
s IS
5 5
_1009 © _109 © _109
10%158 256 512 1024 2048 4006 = 10%138 256 512 1024 2048 4096 = 10%128 256 512 1024 2048 4096

Log Cache Size (GB)

CDN-B1

Log Cache Size (GB) Log Cache Size (GB)

CDN-B2 CDN-B3 31

LRB Overhead Is Modest

Requests —
& r::::::(::l::::::::::} _ I N AR .. .
' 10000 O] -\ e R W

11001 =0

Edge cache

| Memory overhead=1-3% cache size

Peak CPU: 16% vs 9% (unmodified)

Throughput: 11.7 Gbps vs 11.7 Gbps (unmodified) ‘

32

Conclusion

e LRB reduces WAN traffic with modest overhead
e Key insight: relaxed Belady
— Simplifies machine learning & reduces system overhead

— Good decision ratio enables fast design evaluation & design iteration

Code & Wikipedia trace:
https://github.com/sunnyszy/Irb

e .
) Micros oft’
3

Research 33

