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CDN Caching Goal: Minimize WAN Traffic

Requests
Requests  —
CITIIIIIIIIIIIIIID 10000 =0 P N> (SR, P
User Flt Edge cache Miss
& Wide Area Network (WAN)
Q ey traffic is expensive

miss bytes

Key metric byte miss ratio:

total bytes



Caching Remains Challenging

Heuristic-based algorithms (1965-): LRU, LRUK, GDSF, ARGC, ...
e Work well for some workloads, but work poorly for other

ML-based adaptation of heuristics (2017-): UCB, LeCAR, ...
e Also work well for some workloads, but poorly for others

Belady’s MIN algorithm (1966)

e Oracle: requires future knowledge

e Large gap in byte miss ratio between state-of-the-art and Belady:
e 20-40% on production traces



Introducing Learning Relaxed Belady (LRB)

New approach: mimic Belady using machine learning



General Overview of our Approach
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Challenge 1: Past Information
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[ What past information to use? ]

More data improves training
but increases mem overhead



Challenge 2: Generate Online Training Data
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Challenge 3: ML Architecture

( Past information
| |Now [ What past information to use? ]
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[ Training data ] [ Cache } [What ML arChiteCture tO SeleCt? ]
¢ ¢ Large design space:

o features, model, prediction
ML Eviction target, loss function
architecture candidates




Challenge 4: Eviction Candidates
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Challenge 5: Quickly Evaluate Design Decisions

( Past information
'  Now [ What past information to use? ]
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[ Training data ] [ Cache J [What ML architecture to select? ]
¢ ¢ [ How to select evict candidates? ]
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Solutions: Relaxed Belady Algorithm & Good Decision Ratio

What past information to use?

Generate online training data?

[ Relaxed Belady algorithm ]

What ML architecture to select?

How to select evict candidates?

End-to-end evaluation: days [ Good decision ratio ]
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Solutions: Relaxed Belady Algorithm & Good Decision Ratio

[ What past information to use? ]

[ Generate online training data? ]

[ Relaxed Belady algorithm ]

[ What ML architecture to select? ]

[ How to select evict candidates? ]

[ End-to-end evaluation: days ] — [ Good decision ratio: mins ]
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Solutions: Relaxed Belady Algorithm & Good Decision Ratio

[ What past information to use? ] B

[ Generate online training data? ]

> <_[ Relaxed Belady algorithm ]

[ What ML architecture to select? ]

[ How to select evict candidates? ] /

End-to-end evaluation: days — [ Good decision ratio: mins ]
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Challenge: Hard to Mimic Belady (Oracle) Algorithm

Belady: evict object with next access farthest in the future

Cache _/
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Time to next request

Evict

Mimicking exact Belady is impractical

e Need predictions for all objects — prohibitive computational cost
e Need exact prediction of next access — further prediction are harder
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Introducing the Relaxed Belady Algorithm

Belady boundary Evict
Cache /

(now) | —— - T ;-AI ;-C-l
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Time to next request

‘ Observation: many objects are good candidates for eviction ‘

Relaxed Belady evicts an objects beyond boundary
e Do not need predictions for all objects — reasonable computation
e No need to differentiate beyond boundary — simplifies the prediction
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Good Decision Ratio: Directly Measures Eviction Decisions

Bad eviction decision Belady boundary Good eviction decision

evicted obj's next access < boundary

T~

evicted obj's next access > boundary

a— g

Time to next request

Insight: relaxed Belady enables evaluating eviction decisions

Good decision ratio:

# good eviction decisions

# total eviction decisions
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Challenge 5: Quickly Evaluate Design Decisions

——————————— What past information to use?
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Evaluate Design Decisions w/o Simulation

\
r =| Training data ]

!

ML Evic;tion > Simulate once,
architecture candidates reuse for many designs

‘ Evaluate designs on log using good decision ratio in minutes
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Challenge 1: Past Information

Training data
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[ What past information to use? ]

More data improves training
but increases mem overhead
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Track Objects within a Sliding Memory Window

Sliding memory window mimics Belady boundary

Only track objects within memory window

v

‘ Per object features ‘

Window size is LRB’s main hyperparameter
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Challenge 2: Training Data
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Sample Training Data & Label on Access or Boundary

Sliding memory window
___________ S Now
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‘ Per object features ‘

¢ Sample
‘ Unlabeled training data I_

Access Past memory window

\d \d
‘ Labeled training data
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Challenge 3: ML Architecture

( Past information
| |Now [ What past information to use? ]
R ‘I R R |-~ RIRI|R ’l R
ST I """ l [ Generate online training data? ]
[ Training data ] [ Cache } [What ML arChiteCture to SeleCt? ]
¢ ¢ Large potential design space

ML Eviction
architecture candidates

23



Solution 3: Feature & Model Selection

Use good decision ratio to evaluate new designs

o N e
Features p ) 6@6 . q\?}
\’

Obiject size

Object type

- Gradient boosting decision trees
Inter-request distances

(recency) Lightweight & high good decision ratio

Exponential decay counters
(long-term frequencies)

Training ~300 ms, prediction ~30 us ”



Challenge 4: Eviction Candidates

( Past information
' 1 Now [ What past information to use? ]
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¢ ¢ [ How to select evict candidates? ]
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Solution 4: Random Sampling for Eviction

|( Past information ‘Now
R M R|I|R /|- RIRI|R " R
Can mimic relaxed Belady if we can [ Cache }
find 1 object beyond the boundary ¢
k=64 candidates; more does not improve Random k
good decision ratio candidates
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Learning Relaxed Belady

Memory window
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Implementation

e Simulator implementation
o LRB + 14 other algorithms

e Prototype implementation
o C++ on top of production system (Apache Traffic Server)
o Many optimizations
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Evaluation Setup

e Q1: Learning Relaxed Belady (LRB) traffic reduction vs state-of-the-art
e Q2: overhead of LRB vs CDN production system

e Traces: 6 production traces from 3 CDNs

e Hyperparameter (memory window/model/...) tuned on 20% of trace
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LRB Reduces WAN Traffic

Industry standard 20% traffic reduction over B-LRU
S 10% reduction over the best SOA
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LRB Consistently Improves on the State of the Art

Traffic Reduction to B-LRU
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LRB Overhead Is Modest

Requests  —
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Edge cache

| Memory overhead=1-3% cache size

Peak CPU: 16% vs 9% (unmodified)

Throughput: 11.7 Gbps vs 11.7 Gbps (unmodified) ‘
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Conclusion

e LRB reduces WAN traffic with modest overhead
e Key insight: relaxed Belady
—  Simplifies machine learning & reduces system overhead

— Good decision ratio enables fast design evaluation & design iteration

Code & Wikipedia trace:
https://github.com/sunnyszy/Irb
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