Learning Relaxed Belady for Content Delivery Network Caching

Zhenyu Song, Daniel S. Berger, Kai Li, Wyatt Lloyd

NSDI 2020

CDN Caching Goal: Minimize WAN Traffic

Caching Remains Challenging

- Heuristic-based algorithms (1965–): LRU, LRUK, GDSF, ARC, ...
 - Work well for some workloads, but work poorly for other
- ML-based adaptation of heuristics (2017–): UCB, LeCAR, ...
- Also work well for some workloads, but poorly for others
- Belady's MIN algorithm (1966)
- Oracle: requires future knowledge
- Large gap in byte miss ratio between state-of-the-art and Belady:
- 20–40% on production traces

Introducing Learning Relaxed Belady (LRB)

New approach: mimic Belady using machine learning

General Overview of our Approach

Challenge 1: Past Information

What past information to use?

More data improves training but increases mem overhead

Challenge 2: Generate Online Training Data

What past information to use?

Generate online training data?

Challenge 3: ML Architecture

Challenge 4: Eviction Candidates

Challenge 5: Quickly Evaluate Design Decisions

Solutions: Relaxed Belady Algorithm & Good Decision Ratio

What past information to use?

Generate online training data?

What ML architecture to select?

How to select evict candidates?

End-to-end evaluation: days

Solutions: Relaxed Belady Algorithm & Good Decision Ratio

Solutions: Relaxed Belady Algorithm & Good Decision Ratio

Challenge: Hard to Mimic Belady (Oracle) Algorithm Belady: evict object with next access farthest in the future

Time to next request

Mimicking exact Belady is impractical

- Need predictions for all objects \rightarrow prohibitive computational cost
- Need exact prediction of next access \rightarrow further prediction are harder

Introducing the Relaxed Belady Algorithm

Observation: many objects are good candidates for eviction

Relaxed Belady evicts an objects beyond boundary

- Do not need predictions for all objects \rightarrow reasonable computation
- No need to differentiate beyond boundary \rightarrow simplifies the prediction

Good Decision Ratio: Directly Measures Eviction Decisions

Insight: relaxed Belady enables evaluating eviction decisions

Good decision ratio: **# good eviction decisions # total eviction decisions**

Challenge 5: Quickly Evaluate Design Decisions

Evaluate Design Decisions w/o Simulation

Evaluate designs on log using good decision ratio in minutes

Challenge 1: Past Information

What past information to use?

More data improves training but increases mem overhead

Track Objects within a Sliding Memory Window

Sliding memory window mimics Belady boundary

Challenge 2: Training Data

What past information to use?

Generate online training data?

Sample Training Data & Label on Access or Boundary

Challenge 3: ML Architecture

Solution 3: Feature & Model Selection

Use good decision ratio to evaluate new designs

Features	
Object size	
Object type	Gradient boosting decision trees
Inter-request distances (recency)	
Exponential decay counters (long-term frequencies)	

Training ~300 ms, prediction ~30 us

Challenge 4: Eviction Candidates

Solution 4: Random Sampling for Eviction

Can mimic relaxed Belady if we can find 1 object beyond the boundary

k=64 candidates; more does not improve good decision ratio

Learning Relaxed Belady

Implementation

- Simulator implementation
 - LRB + 14 other algorithms
- Prototype implementation
 - C++ on top of production system (Apache Traffic Server)
 - Many optimizations

Evaluation Setup

- Q1: Learning Relaxed Belady (LRB) traffic reduction vs state-of-the-art
- Q2: overhead of LRB vs CDN production system
- Traces: 6 production traces from 3 CDNs
- Hyperparameter (memory window/model/...) tuned on 20% of trace

LRB Reduces WAN Traffic

LRB Overhead Is Modest

Conclusion

- LRB reduces WAN traffic with modest overhead
- Key insight: **relaxed Belady**
 - → Simplifies machine learning & reduces system overhead
 - \rightarrow Good decision ratio enables fast design evaluation & design iteration

Code & Wikipedia trace: https://github.com/sunnyszy/lrb

