
AccelTCP: Accelerating Network Applications
with Stateful TCP Offloading

YoungGyoun Moon, Seungeon Lee,
Muhammad Asim Jamshed*, KyoungSoo Park

School of Electrical Engineering, KAIST
* Intel Labs

TCP is widely adopted in modern networks

2
[1] Comparison of Caching Strategies in Modern Cellular Backhaul Networks (MobiSys ‘13)
[2] RDMA over Commodity Ethernet at Scale (SIGCOMM ‘16)

 Used by 95+% of WAN traffic and 50+% of datacenter traffic [1][2]

 The gap between network bandwidth and CPU capacity widens

2009 2019

1GbE 100GbE

100x

CPU efficiency of TCP stack becoming increasingly important

 Recent TCP stacks adopt numerous optimization techniques

• e.g., optimized packet I/O, kernel-bypassing, zero-copying

 Unfortunately, fundamentally limited by TCP conformance overhead

Suboptimal CPU efficiency in TCP stacks

3

Reliable data transfer

Buffer management

Congestion/flow control

Connection management

Host CPU

TCP overhead in short-lived connections

4

 Short TCP flows dominates the Internet

• 80% of cellular network traffic is smaller than 8KB [1]

 Connection management overhead in short TCP flows

DataplaneHost

Network

Connection setup Connection teardown

SYN FIN
Handling control packets

Managing flow states

Overheads

[1] Comparison of Caching Strategies in Modern Cellular Backhaul Networks (MobiSys ‘13)

>60%

Connection
management

CPU breakdown of mTCP + Redis

• A single key-value lookup per connection

TCP overhead in Layer-7 (L7) proxying

 L7 proxies are widely adopted (e.g., load balancer, API gateway)

 Payload relaying overhead in L7 proxies

5

DMA overhead

TCP processing

Overheads

TCP

NIC

App Memcpy from/to app

Connection 2Connection 1

L7 load balancer
48 cores48 cores

100GbE =

DMA overhead

TCP processingTCP

NIC

App Memcpy from/to appMemcpy from/to app

Connection 2Connection 1

L7 load balancer
48 cores44 cores

100GbE =

splice()

“connection splicing”

Our work: AccelTCP

6

Connection 2Connection 1

splice()

Dataplane

Connection setup Connection teardown

SYN FINConnection management

Connection splicing

NIC offload of mechanical operations for TCP conformance

Existing TCP NIC offloads

 Full-stack TCP offload engine (TOE)

• Poor connection scalability

• Difficult to extend (e.g., adding a new congestion control algorithm)

 TCP Segmentation Offload (TSO) and Large Receive Offload (LRO)

• Saves significant CPU cycles for processing large messages

7

Our work: AccelTCP

8

Extend the benefit of NIC offload to general TCP applications

?

? ?

Small-message connections Large-message connections

Server/clients

Proxies

Typical TCP offloads
(e.g., TSO, LRO)

AccelTCP

 A dual-stack TCP architecture with stateful TCP offloading

• Selectively offloads peripheral TCP operations to NICs

AccelTCP design overview

9

Host stack
Central TCP operations

Peripheral TCP operations
NIC stack

 Required for data transfer

 Required for protocol conformance

Reliable data transfer

Buffer management

Congestion/flow control

Segmentation/checksum

Connection setup/teardown

Connection splicing

 A dual-stack TCP architecture with stateful TCP offloading

• Selectively offloads peripheral TCP operations to NICs

AccelTCP design overview

10

Host stack

Reliable data transfer

Buffer management

Congestion/flow control

Segmentation/checksum

Connection setup/teardown

Connection splicing

NIC stack

Synchronizing flow states

Limited NIC resources

Challenges

Challenge #1. Synchronizing flow states

 Connection management and splicing are stateful TCP operations

• Transmission control block (TCB) needs to be updated

 Challenging to maintain flow state consistency across two stacks

• Huge DMA cost to deliver sync messages

11

Dataplane

DataplaneHost

NIC

TCB

TCB

TCB syncs

Challenge #1. Synchronizing flow states

 Our approach: Single ownership of a TCP flow and its TCB

 Key ideas:

• TCB sync occurs only in between the different phases

• TCB sync messages are piggybacked with payload packets

12

Dataplane

Dataplane

Dataplane

Host

NIC

Connection setup Data transfer Connection teardown
time

TCB TCBTCB Payload TCB Payload

Challenge #2. Limited NIC resources

 Limited fast memory size

• For holding program instructions and connection states

• e.g., 8MB SRAM in Netronome Agilio LX

 Limited compute capacity

• Typical TCP stacks: 1000 - 3000 cycles/packet

 Performance drop by 30 - 80% in Agilio LX

13

Our approach: Minimize NIC dataplane complexity

Challenge #2. Limited NIC resources

14

Limited memory

Connection setup Use SYN cookie
 stateless operation

Limited CPU capacity

Minimize TCB on NIC

of concurrent flows:

10k  256k

Use fast hashing
(in hardware)

Connection teardown

Connection splicing
Differential

checksum update

Timer bitmap wheel

this talk

Tracking timeouts on NIC

 Required for TCP retransmission or last ACK timeout, TIME_WAIT

 No flow-to-core affinity  A global data structure for tracking timeout

• Frequent timer registration incurs a huge lock contention

15

On-chip SRAM

…

Core 1

…

…

Core
2

…

…

Core
3

…

…

…

…

… … … Core
120

Gloabal flow
list/table

Timer bitmap wheel

16

timeout

…

core 1

core 2

core 3

core 4

core N

T =1ms

T=2ms

T=3ms

T=4ms

T=5ms
T=6ms

T=7ms

T=9ms

T=8ms

T=0ms

(core A)

(core B)

(core C)

scanned by

B1

 Efficient timer registration & invocation in NIC dataplane

3 flows added (RTO for FIN = 8ms)

flow bitmap (indexed by flow ID)

Host stack optimizations

1. User-level threading

• Avoid heavy context switching overhead between TCP stack and app

2. Opportunistic zero-copy

• Avoid socket buffer copy if packets can be delivered directly from/to app

3. Lazy TCB Creation

• Many fields of TCB (up to 700 bytes) are unused in single transaction case

 Our approach: Create a quasi-TCB (40 bytes) for a new connection

17

Check out our paper for more details 

Implementation and experiment setup

 NIC stack: running on Netronome Agilio NICs

• 1,501 lines of C code and 195 lines of P4 code

 Host stack: extended mTCP to support NIC offloads

• Easy to port existing apps (connect()  mtcp_connect())

• Experiment setup

• CPU: Xeon Gold 6142 (16-cores @ 2.6GHz)

• NIC: Netronome Agilio LX 40GbE x2

• Memory: 128GB DDR4 RAM

• Use up to 8 client machines (Xeon E5-2640 v3) to generate workload

18

Does AccelTCP support high connection rate?

19

 Throughput performance of a TCP server

• A single 64B packet transaction per connection

0

5

10

15

20

1 2 3 4 5 6 7 8

Tr
an

sa
ct

io
ns

/s
ec

 (x
10

6)

Number of CPU cores

2.2x

3x

3.4x
3.8x

NIC bottleneck

Do applications benefit from AccelTCP?

20

0.0

1.6

3.2

1 2 3 4 5 6 7 8

(M
tp

s)

CPU cores

mTCP AccelTCP

2.3x

0%

50%

100%

mTCP AccelTCP

TCP/IP Redis app

1/4

Redis under Facebook USR workload (flow size: < 20B)

Throughput CPU utilization

Do applications benefit from AccelTCP?

21

mTCP (8-core)

AccelTCP

6.2 Gbps

73.1 Gbps 11.8x

HAProxy under SpecWeb2009-like workload

Summary

22

github.com/acceltcp

shader.kaist.edu/acceltcp

 TCP performance limited by protocol conformance overhead
• Short-lived flows and L7 proxies cannot benefit from existing TCP offloads

 AccelTCP explores a new design space of NIC-assisted TCP stack
• Connection management and splicing can be offloaded to NIC

 AccelTCP significantly improves CPU efficiency of real-world apps
• 2.3x improvement with Redis, 12x improvement with HAproxy

Source code available:

