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TCP is widely adopted in modern networks
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[1] Comparison of Caching Strategies in Modern Cellular Backhaul Networks (MobiSys ‘13)
[2] RDMA over Commodity Ethernet at Scale (SIGCOMM ‘16)

 Used by 95+% of WAN traffic and 50+% of datacenter traffic [1][2]

 The gap between network bandwidth and CPU capacity widens
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CPU efficiency of TCP stack becoming increasingly important



 Recent TCP stacks adopt numerous optimization techniques

• e.g., optimized packet I/O, kernel-bypassing, zero-copying

 Unfortunately, fundamentally limited by TCP conformance overhead 

Suboptimal CPU efficiency in TCP stacks

3

Reliable data transfer

Buffer management

Congestion/flow control

Connection management

Host CPU



TCP overhead in short-lived connections
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 Short TCP flows dominates the Internet

• 80% of cellular network traffic is smaller than 8KB [1]

 Connection management overhead in short TCP flows
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[1] Comparison of Caching Strategies in Modern Cellular Backhaul Networks (MobiSys ‘13)
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• A single key-value lookup per connection



TCP overhead in Layer-7 (L7) proxying

 L7 proxies are widely adopted (e.g., load balancer, API gateway)

 Payload relaying overhead in L7 proxies
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Our work: AccelTCP
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Existing TCP NIC offloads

 Full-stack TCP offload engine (TOE)

• Poor connection scalability

• Difficult to extend  (e.g., adding a new congestion control algorithm)

 TCP Segmentation Offload (TSO) and Large Receive Offload (LRO)

• Saves significant CPU cycles for processing large messages
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Our work: AccelTCP
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Extend the benefit of NIC offload to general TCP applications
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 A dual-stack TCP architecture with stateful TCP offloading

• Selectively offloads peripheral TCP operations to NICs

AccelTCP design overview
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 A dual-stack TCP architecture with stateful TCP offloading

• Selectively offloads peripheral TCP operations to NICs

AccelTCP design overview
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Challenge #1. Synchronizing flow states

 Connection management and splicing are stateful TCP operations

• Transmission control block (TCB) needs to be updated

 Challenging to maintain flow state consistency across two stacks

• Huge DMA cost to deliver sync messages
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Challenge #1. Synchronizing flow states

 Our approach: Single ownership of a TCP flow and its TCB

 Key ideas:

• TCB sync occurs only in between the different phases

• TCB sync messages are piggybacked with payload packets

12

Dataplane

Dataplane

Dataplane

Host

NIC

Connection setup Data transfer Connection teardown
time

TCB TCBTCB Payload TCB Payload



Challenge #2. Limited NIC resources

 Limited fast memory size

• For holding program instructions and connection states

• e.g., 8MB SRAM in Netronome Agilio LX

 Limited compute capacity

• Typical TCP stacks: 1000 - 3000 cycles/packet

 Performance drop by 30 - 80% in Agilio LX
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Our approach: Minimize NIC dataplane complexity

Challenge #2. Limited NIC resources
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Tracking timeouts on NIC

 Required for TCP retransmission or last ACK timeout, TIME_WAIT

 No flow-to-core affinity  A global data structure for tracking timeout

• Frequent timer registration incurs a huge lock contention
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Timer bitmap wheel
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Host stack optimizations

1. User-level threading

• Avoid heavy context switching overhead between TCP stack and app

2. Opportunistic zero-copy

• Avoid socket buffer copy if packets can be delivered directly from/to app

3. Lazy TCB Creation

• Many fields of TCB (up to 700 bytes) are unused in single transaction case

 Our approach: Create a quasi-TCB (40 bytes) for a new connection

17

Check out our paper for more details 



Implementation and experiment setup

 NIC stack: running on Netronome Agilio NICs

• 1,501 lines of C code and 195 lines of P4 code

 Host stack: extended mTCP to support NIC offloads

• Easy to port existing  apps (connect()  mtcp_connect())

• Experiment setup

• CPU: Xeon Gold 6142 (16-cores @ 2.6GHz)

• NIC: Netronome Agilio LX 40GbE x2

• Memory: 128GB DDR4 RAM

• Use up to 8 client machines (Xeon E5-2640 v3) to generate workload
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Does AccelTCP support high connection rate?
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 Throughput performance of a TCP server

• A single 64B packet transaction per connection
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Do applications benefit from AccelTCP?
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Do applications benefit from AccelTCP?
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Summary
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github.com/acceltcp

shader.kaist.edu/acceltcp

 TCP performance limited by protocol conformance overhead
• Short-lived flows and L7 proxies cannot benefit from existing TCP offloads 

 AccelTCP explores a new design space of NIC-assisted TCP stack
• Connection management and splicing can be offloaded to NIC

 AccelTCP significantly improves CPU efficiency of real-world apps
• 2.3x improvement with Redis, 12x improvement with HAproxy

Source code available:


