
MALT: NSDI 2020MALT: NSDI 2020

Experiences with Modeling Network Topologies
at Multiple Levels of Abstraction

Jeffrey C. Mogul, Drago Goricanec, Martin Pool, Anees Shaikh,
 Douglas Turk, Bikash Koley (Google)
Xiaoxue Zhao (Alibaba Group Inc.)
… and a cast of hundreds

1

MALT: NSDI 2020

A common standard for representing network topology

It's not as easy as you might think -- the paper tries to explain what we learned
● This talk only scratches the surface

2

MALT: NSDI 2020

Google has some big networks

3

MALT: NSDI 2020

PoPs and network: 134 points of presence and 14 subsea cable investments around the globe (as of Feb 2020)
 (Google internal data)

Network
Edge point
of presence

4

MALT: NSDI 2020 5

MALT: NSDI 2020 6

These networks have a lot of wires ...

MALT: NSDI 2020

Big networks need automated management

At our scale, we need to automate all phases of managing a network:
● Demand forecasting and capacity planning
● High-level network design
● Detailed network design
● Ordering materials -- racks, switches, cables, etc.
● Installing the physical network (instructions to human operators)
● Configuring switches and SDN controllers
● Monitoring the state of the network and its pieces
● Diagnosing problems

7

MALT: NSDI 2020

Big networks need automated management

At our scale, we need to automate all phases of managing a network:
● Demand forecasting and capacity planning
● High-level network design
● Detailed network design
● Ordering materials -- racks, switches, cables, etc.
● Installing the physical network (instructions to human operators)
● Configuring switches and SDN controllers
● Monitoring the state of the network and its pieces
● Diagnosing problems

Note: smaller networks need automation, too -- it's just less obvious

8

MALT: NSDI 2020

Automation needs data

In order to automate safely, we need precise and accurate data about our networks:

● High-level plans for connectivity
● Low-level details of connectivity
● Device & controller configuration
● Access control policies
● Routing policies
● IP address allocations

9

MALT: NSDI 2020

Automation needs data

In order to automate safely, we need precise and accurate data about our networks:

● High-level plans for connectivity
● Low-level details of connectivity
● Device & controller configuration
● Access control policies
● Routing policies
● IP address allocations

} topology intent for a network

} policy intent controlling how topology
 intent leads to config

} derived from topology intent

10

MALT: NSDI 2020

Automation needs data

In order to automate safely, we need precise and accurate data about our networks:

● High-level plans for connectivity
● Low-level details of connectivity
● Device & controller configuration
● Access control policies
● Routing policies
● IP address allocations

Topology: the starting point for almost all inputs to automated network management

} topology intent for a network

} policy for deriving config from topology

} derived from topology intent

11

MALT: NSDI 2020

A common standard for representing network topology

Multi-Abstraction-Layer Topology (MALT):

● Google's internal standard for (almost) all representations of network topology
● Supports interoperability between many software systems
● Supports multiple layers of abstraction
● Supports extensibility and evolution
● Supports declarative approaches to network management
● Supported by a rich software ecosystem

12

MALT: NSDI 2020

Why a standard representation?

Prior to adopting MALT, we had lots of ad hoc
producer-consumer agreements
● knowledge was often hidden in code

A standard representation:
● decouples producers and consumers
● exposes knowledge in the data, rather than

hiding it in code
● enables the development of shared

infrastructure
● Overall: enables faster innovation

13

P1 P2 Pn...

C1 C2 ... Cm

P1 P2 Pn...

C1 C2 ... Cm

Single standard

No standard: m*n agreements

With standard: m+n agreements

MALT: NSDI 2020

Key

Example: MALT for a multi-phase network design pipeline

14

Demand
forecast

Human
inputs

High-level
network design

Detailed L3
network design

Detailed L1 network
design

Automated high-level
designer

Automated L3
designer

Automated L1
designer

L3 design
rules

L1 design
rules

Spatial
data

L3 consumers: device config,
SDN controllers, etc.

L1 consumers: materials
ordering, fiber installation, etc.

MALT data

Process
step

Other data

Generate network designs automatically
● Start with high-level abstractions
● Expand detail at each step, based on

additional data

MALT: NSDI 2020

Abstractions go deep

15

router

physical_packet_link

optical transponder/
muxponder card

client
port

line
port

optical common -
mux/demux,
ROADM

local
port DWDM

port

SMF28
fiber

LEAF
fiber

fiber
joint

ODU

OTU

OCH / OMSG

OMS

OTS
fiber

segment optical
amplifier

Media_link

Media_link

Example of "Optical Transport Network" hierarchy (used in WANs)

MALT: NSDI 2020

Basics of MALT

● MALT is an entity-relationship model:
○ Entities represent things: real or abstract
○ Entities have entity-kinds, names and attributes
○ Relationships connect entities, and don't have attributes

● Example real entities: routers; connectors; fibers; server machines; racks
● Example abstract entities: Clos networks; trunk links; groups of all sorts
● Example relationships: contains, aggregates, controls

MALT today has:
● ca. 250 entity-kinds
● ca. 20 relationship-kinds

16

MALT: NSDI 2020

Trivial entity-relationship graph (one L3 link)

L2
elements

L3
elements

EK_LOGICAL_PACKET_LINK
Y:1.0 - X:1.0

EK_PORT
X:1

EK_PORT
Y:1

EK_PHYSICAL_PACKET_LINK
X:1 - Y:1

EK_PHYSICAL_PACKET_LINK
Y:1 - X:1

RK_CONTAINS RK_TRAVERSES RK_ORGINATES RK_TERMINATES

EK_ROUTER
X

EK_ROUTER
Y

EK_INTERFACE
X:1.0

EK_INTERFACE
Y:1.0

EK_LOGICAL_PACKET_LINK
X:1.0 - Y:1.0

Entity

17

MALT: NSDI 2020

Trivial entity-relationship graph (one L3 link)

L2
elements

L3
elements

EK_LOGICAL_PACKET_LINK
Y:1.0 - X:1.0

EK_PORT
X:1

EK_PORT
Y:1

EK_PHYSICAL_PACKET_LINK
X:1 - Y:1

EK_PHYSICAL_PACKET_LINK
Y:1 - X:1

RK_CONTAINS RK_TRAVERSES RK_ORGINATES RK_TERMINATES

EK_ROUTER
X

EK_ROUTER
Y

EK_INTERFACE
X:1.0

EK_INTERFACE
Y:1.0

EK_LOGICAL_PACKET_LINK
X:1.0 - Y:1.0Relationship

18

MALT: NSDI 2020

Trivial entity-relationship graph (one L3 link)

L2
elements

L3
elements

EK_ROUTER
X

EK_ROUTER
Y

EK_INTERFACE
X:1.0

EK_INTERFACE
Y:1.0

EK_LOGICAL_PACKET_LINK
X:1.0 - Y:1.0

EK_LOGICAL_PACKET_LINK
Y:1.0 - X:1.0

EK_PORT
X:1

EK_PORT
Y:1

EK_PHYSICAL_PACKET_LINK
X:1 - Y:1

EK_PHYSICAL_PACKET_LINK
Y:1 - X:1

RK_CONTAINS RK_TRAVERSES RK_ORGINATES RK_TERMINATES

19

MALT: NSDI 2020

"This looks too verbose"

MALT is meant for computers, not for humans!
● Computers are good at processing graphs with millions of entities
● Software is bad at making inferences -- it's better to have too much detail

20

MALT: NSDI 2020

"This looks too verbose"

MALT is meant for computers, not for humans!
● Computers are good at processing graphs with millions of entities
● Software is bad at making inferences -- it's better to have too much detail

But we can still express MALT graphs in text, when we have to:
EK_ROUTER/X RK_CONTAINS EK_INTERFACE/X:1.0

EK_INTERFACE/X:1.0 RK_TRAVERSES EK_PORT/X:1

EK_ROUTER/Y RK_CONTAINS EK_INTERFACE/Y:1.0

EK_INTERFACE/Y:1.0 RK_TRAVERSES EK_PORT/Y:1

EK_LOGICAL_PACKET_LINK/"X:1.0 - Y:1.0"

 RK_TRAVERSES EK_PHYSICAL_PACKET_LINK/"X:1 - Y:1"

EK_PORT/X:1 RK_ORIGINATES

 EK_PHYSICAL_PACKET_LINK/"X:1 - Y:1"

EK_PORT/Y:1 RK_TERMINATES

 EK_PHYSICAL_PACKET_LINK/"X:1 - Y:1"

EK_INTERFACE/X:1.0 RK_ORIGINATES

 EK_LOGICAL_PACKET_LINK/"X:1.0 - Y:1.0"

EK_INTERFACE/Y:1.0 RK_TERMINATES

 EK_LOGIICAL_PACKET_LINK/"X:1.0 - Y:1.0"

(this is about 80% of the previous diagram)
21

MALT: NSDI 2020

Entity attributes

Attributes allow us to express intent and status for specific points in the topology

Partial examples for EK_PORT and EK_INTERFACE, using Google Protocol Buffer notation:

port_attr: <

 device_port_name: "port-1/24"

 openflow: <

 of_port_number: 24

 >

 port_role: PR_SINGLETON

 port_attributes: <

 physical_capacity_bps: 40000000000

 >

 dropped_packets_per_second: 3

>

interface_attr: <

 address: <

 ipv4: <

 address: "10.1.2.3"

 prefixlen: 32

 >

 ipv6: <

 address: "1111:2222:3333:4444::"

 prefixlen: 64

 >

 >

>

22

MALT: NSDI 2020

Entity attributes

Attributes allow us to express intent and status for specific points in the topology

Partial examples for EK_PORT and EK_INTERFACE, using Google Protocol Buffer notation:

port_attr: <

 device_port_name: "port-1/24"

 openflow: <

 of_port_number: 24

 >

 port_role: PR_SINGLETON

 port_attributes: <

 physical_capacity_bps: 40000000000

 >

 dropped_packets_per_second: 3

>

interface_attr: <

 address: <

 ipv4: <

 address: "10.1.2.3"

 prefixlen: 32

 >

 ipv6: <

 address: "1111:2222:3333:4444::"

 prefixlen: 64

 >

 >

>

intent attributes

observed attribute

23

MALT: NSDI 2020

MALT's software ecosystem

MALT's representation would be useless without a rich software ecosystem:

● Libraries to support common operations and hide some details
● Systems to automatically generate detailed models from abstract models
● Model visualization and network visualization GUIs
● A domain-specific query language
● A scalable, reliable storage system

24

MALT: NSDI 2020

MALT queries

Most applications navigate small regions of a model, not an entire graph
● e.g.: generate config for a single device; figure out what fails if a rack dies

MALT has a query language to make this reasonably efficient
● It's hard to get the right tradeoff between expressive power and usability
● The raw query language is still confusing to many programmers

○ We added a layer of "canned queries" with specific semantics
■ E.g. "All L2 links between a pair of switches" or "Rack that contains a line card"

○ Canned queries also insulate clients against many kinds of schema change

● Why didn't we use SQL queries?
○ We have good reasons not to expose SQL … see the paper

25

MALT: NSDI 2020

Example MALT query
Given a device, find its geographical information and

the ports and interfaces it contains.

cmd { find { match { id { kind: EK_DEVICE name: 'foo' }}}}

cmd

 branch {

 # Expand backwards.

 sequence {

 cmd {

 follow_until {

 kind: RK_CONTAINS dir:DIR_BACKWARDS

 target { match { id { kind: EK_CONTINENT }}}

 }

 }

 }

 # Expand forwards.

 sequence {

 cmd {

 follow_until {

 kind: RK_CONTAINS

 target {

 match { id { kind: EK_PORT } }

 match { id { kind: EK_INTERFACE } }

 }

 }

 }

 }

 }

}

26

MALT: NSDI 2020

Storage: MALTshop

We wanted a single (replicated) service for storing MALT models:
● Implement and operate just one high-availability service, not lots of them
● Promote controlled sharing between applications and teams
● Ensure there's an easy way to find anything across all of our network models

MALTshop:
● Supports zillions of named "shards" with ACLs + immutable-version semantics
● Efficient support for incremental updates, queries, etc.
● Based on Spanner for scale and geo-consistency
● Currently: thousands of shards, millions of entities/shard, 1000s of queries/sec

27

MALT: NSDI 2020Confidential + Proprietary

This is not as easy as
you might think

28

MALT: NSDI 2020

We learned a lot of lessons, the hard way

● Schema design principles (and the need to be rigorous about them)
● Support for schema evolution
● Structure design pipelines as dataflow graphs, not shared-database updates
● Use different models for different phases of a network's lifecycle
● Migrating users from older representations (it's really hard)
● The dangers of string-parsing (it's really bad)
● Using human-readable names for entities (not our best idea)
● A good representation doesn't save you from dirty data

29

MALT: NSDI 2020

We learned a lot of lessons, the hard way

● Schema design principles (and the need to be rigorous about them)
● Support for schema evolution
● Structure design pipelines as dataflow graphs, not shared-database updates
● Use different models for different phases of a network's lifecycle
● Migrating users from older representations (it's really hard)
● The dangers of string-parsing (it's really bad)
● Using human-readable names for entities (not our best idea)
● A good representation doesn't save you from dirty data

Only enough time for a few of these topics; see the paper for the others

30

MALT: NSDI 2020

Schema design principles

● "Fewer entity-kinds" does not make the schema "simpler"
○ Overloaded concepts lead to ambiguity, which leads to complex/fragile code

● Instead, favor orthogonality and separation of aspects
○ Orthogonality: two "things" with mostly-disjoint attributes/relationships should be two EKs
○ Separation of aspects: complex things (e.g., routers) can be multiple EK (data plane, metal, etc.)

● Use explicit relationships rather than name-based attributes

● Use relationship-kinds consistently
○ Otherwise, it's harder to create straightforward queries

31

MALT: NSDI 2020

Schema evolution

Networks are complex and we're constantly innovating in unexpected ways
● So, the MALT schema needs to continually evolve

We use multiple processes to manage evolution:
● Curation of schema changes via expert "review board" + a written Style Guide
● "Profiles" to further constrain schema for specific parts of our networks

○ + machine-checkable profile language to enforce contract between producers + consumers

● Explicit profile versions, so consumers can evolve independent of producers
○ Automated model generation allows producers to create the same data for multiple profiles

● "Canned queries" insulate most consumers from much of our evolution

Abstraction is vital, but taxonomy is hard -- even for experts

32

MALT: NSDI 2020

Why we prefer dataflow design pipelines to databases
Demand
forecast

Human
inputs

High-level
network design

Detailed L3
network design

Detailed L1 network
design

Automated high-level
designer

Automated L3
designer

Automated L1
designer

L3 design
rules

L1 design
rules

Spatial
data

Dataflow-style design pipeline

L3
consumers

L1
consumers

33

MALT: NSDI 2020

Why we prefer dataflow design pipelines to databases
Demand
forecast

Human
inputs

High-level
network design

Detailed L3
network design

Detailed L1 network
design

Automated high-level
designer

Automated L3
designer

Automated L1
designer

L3 design
rules

L1 design
rules

Spatial
data

Dataflow-style design pipeline

Human
inputs

Automated high-level
designer

Automated L3
designer

Automated L1
designer

L3 design
rules

L1 design
rules

Spatial
data

Topology
database

L3
consumers

L1
consumers

L3
consumers

L1
consumers

Database-style design pipeline
34

>>

MALT: NSDI 2020

Why we prefer dataflow design pipelines to databases
Demand
forecast

Human
inputs

High-level
network design

Detailed L3
network design

Detailed L1 network
design

Automated high-level
designer

Automated L3
designer

Automated L1
designer

L3 design
rules

L1 design
rules

Spatial
data

Dataflow-style design pipeline

Human
inputs

Automated high-level
designer

Automated L3
designer

Automated L1
designer

L3 design
rules

L1 design
rules

Spatial
data

Topology
database

L3
consumers

L1
consumers

L3
consumers

L1
consumers

Database-style design pipeline
35

Dataflow-style pipeline:

● Clear ownership of data at each stage

● Clear producer-consumer contracts

● Easy to create test datasets

● Easy to re-run the pipeline when things
change

● Easy to insert validations at each step

MALT: NSDI 2020

Why we prefer dataflow design pipelines to databases
Demand
forecast

Human
inputs

High-level
network design

Detailed L3
network design

Detailed L1 network
design

Automated high-level
designer

Automated L3
designer

Automated L1
designer

L3 design
rules

L1 design
rules

Spatial
data

Dataflow-style design pipeline

Human
inputs

Automated high-level
designer

Automated L3
designer

Automated L1
designer

L3 design
rules

L1 design
rules

Spatial
data

Topology
database

L3
consumers

L1
consumers

L3
consumers

L1
consumers

Database-style design pipeline
36

Dataflow-style pipeline:

● Clear ownership of data at each stage

● Clear producer-consumer contracts

● Easy to create test datasets

● Easy to re-run the pipeline when things
change

● Easy to insert validations at each step

Database-style pipeline:

● Stages are unclear

● Ownership is global

● Fuzzy producer-consumer contracts

● Hard to create test datasets

● Hard to re-run the pipeline, because you first
have to undo the previous updates

MALT: NSDI 2020

Thanks!

● Automation requires both low-level detail and abstraction
● Abstraction is hard and requires support for controlled evolution
● A data-exchange format needs a full software ecosystem
● Network topology ties together all of our network management automation
● Network management: it's about the whole lifecycle, not just the running network

37

