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A common standard for representing network topology

It's not as easy as you might think -- the paper tries to explain what we learned
● This talk only scratches the surface
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Google has some big networks

3



MALT: NSDI 2020

PoPs and network: 134 points of presence and 14 subsea cable investments around the globe (as of Feb 2020)
             (Google internal data)

Network
Edge point 
of presence
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These networks have a lot of wires ...
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Big networks need automated management

At our scale, we need to automate all phases of managing a network:
● Demand forecasting and capacity planning
● High-level network design
● Detailed network design
● Ordering materials -- racks, switches, cables, etc.
● Installing the physical network (instructions to human operators)
● Configuring switches and SDN controllers
● Monitoring the state of the network and its pieces
● Diagnosing problems
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Big networks need automated management

At our scale, we need to automate all phases of managing a network:
● Demand forecasting and capacity planning
● High-level network design
● Detailed network design
● Ordering materials -- racks, switches, cables, etc.
● Installing the physical network (instructions to human operators)
● Configuring switches and SDN controllers
● Monitoring the state of the network and its pieces
● Diagnosing problems

Note: smaller networks need automation, too -- it's just less obvious
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Automation needs data

In order to automate safely, we need precise and accurate data about our networks:

● High-level plans for connectivity
● Low-level details of connectivity
● Device & controller configuration
● Access control policies
● Routing policies
● IP address allocations
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Automation needs data

In order to automate safely, we need precise and accurate data about our networks:

● High-level plans for connectivity
● Low-level details of connectivity
● Device & controller configuration
● Access control policies
● Routing policies
● IP address allocations

} topology intent for a network

} policy intent controlling how topology
     intent leads to config

} derived from topology intent
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Automation needs data

In order to automate safely, we need precise and accurate data about our networks:

● High-level plans for connectivity
● Low-level details of connectivity
● Device & controller configuration
● Access control policies
● Routing policies
● IP address allocations

Topology: the starting point for almost all inputs to automated network management

} topology intent for a network

} policy for deriving config from topology

} derived from topology intent
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A common standard for representing network topology

Multi-Abstraction-Layer Topology (MALT):

● Google's internal standard for (almost) all representations of network topology
● Supports interoperability between many software systems
● Supports multiple layers of abstraction
● Supports extensibility and evolution
● Supports declarative approaches to network management
● Supported by a rich software ecosystem
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Why a standard representation?  

Prior to adopting MALT, we had lots of ad hoc 
producer-consumer agreements
● knowledge was often hidden in code

A standard representation:
● decouples producers and consumers
● exposes knowledge in the data, rather than 

hiding it in code
● enables the development of shared 

infrastructure
● Overall: enables faster innovation
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No standard: m*n agreements
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Key

Example: MALT for a multi-phase network design pipeline
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High-level
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Process 
step

Other data

Generate network designs automatically
● Start with high-level abstractions
● Expand detail at each step, based on 

additional data
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Abstractions go deep
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Basics of MALT

● MALT is an entity-relationship model:
○ Entities represent things: real or abstract
○ Entities have entity-kinds, names and attributes
○ Relationships connect entities, and don't have attributes

● Example real entities: routers; connectors; fibers; server machines; racks
● Example abstract entities: Clos networks; trunk links; groups of all sorts
● Example relationships: contains, aggregates, controls

MALT today has:
● ca. 250 entity-kinds
● ca. 20 relationship-kinds
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Trivial entity-relationship graph (one L3 link)

L2
elements

L3
elements

EK_LOGICAL_PACKET_LINK
Y:1.0 - X:1.0

EK_PORT
X:1

EK_PORT
Y:1

EK_PHYSICAL_PACKET_LINK
X:1 - Y:1

EK_PHYSICAL_PACKET_LINK
Y:1 - X:1

RK_CONTAINS RK_TRAVERSES RK_ORGINATES RK_TERMINATES

EK_ROUTER
X

EK_ROUTER
Y

EK_INTERFACE
X:1.0

EK_INTERFACE
Y:1.0

EK_LOGICAL_PACKET_LINK
X:1.0 - Y:1.0

Entity
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Trivial entity-relationship graph (one L3 link)

L2
elements

L3
elements

EK_LOGICAL_PACKET_LINK
Y:1.0 - X:1.0

EK_PORT
X:1

EK_PORT
Y:1

EK_PHYSICAL_PACKET_LINK
X:1 - Y:1

EK_PHYSICAL_PACKET_LINK
Y:1 - X:1

RK_CONTAINS RK_TRAVERSES RK_ORGINATES RK_TERMINATES

EK_ROUTER
X

EK_ROUTER
Y

EK_INTERFACE
X:1.0

EK_INTERFACE
Y:1.0

EK_LOGICAL_PACKET_LINK
X:1.0 - Y:1.0Relationship
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Trivial entity-relationship graph (one L3 link)

L2
elements

L3
elements

EK_ROUTER
X

EK_ROUTER
Y

EK_INTERFACE
X:1.0

EK_INTERFACE
Y:1.0

EK_LOGICAL_PACKET_LINK
X:1.0 - Y:1.0

EK_LOGICAL_PACKET_LINK
Y:1.0 - X:1.0

EK_PORT
X:1

EK_PORT
Y:1

EK_PHYSICAL_PACKET_LINK
X:1 - Y:1

EK_PHYSICAL_PACKET_LINK
Y:1 - X:1

RK_CONTAINS RK_TRAVERSES RK_ORGINATES RK_TERMINATES
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"This looks too verbose"

MALT is meant for computers, not for humans!
● Computers are good at processing graphs with millions of entities
● Software is bad at making inferences -- it's better to have too much detail

20
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"This looks too verbose"

MALT is meant for computers, not for humans!
● Computers are good at processing graphs with millions of entities
● Software is bad at making inferences -- it's better to have too much detail

But we can still express MALT graphs in text, when we have to:
EK_ROUTER/X RK_CONTAINS EK_INTERFACE/X:1.0

EK_INTERFACE/X:1.0 RK_TRAVERSES EK_PORT/X:1

EK_ROUTER/Y RK_CONTAINS EK_INTERFACE/Y:1.0

EK_INTERFACE/Y:1.0 RK_TRAVERSES EK_PORT/Y:1

EK_LOGICAL_PACKET_LINK/"X:1.0 - Y:1.0"

  RK_TRAVERSES EK_PHYSICAL_PACKET_LINK/"X:1 - Y:1"

EK_PORT/X:1 RK_ORIGINATES

  EK_PHYSICAL_PACKET_LINK/"X:1 - Y:1"

EK_PORT/Y:1 RK_TERMINATES

  EK_PHYSICAL_PACKET_LINK/"X:1 - Y:1"

EK_INTERFACE/X:1.0 RK_ORIGINATES

  EK_LOGICAL_PACKET_LINK/"X:1.0 - Y:1.0"

EK_INTERFACE/Y:1.0 RK_TERMINATES

  EK_LOGIICAL_PACKET_LINK/"X:1.0 - Y:1.0" 

(this is about 80% of the previous diagram)
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Entity attributes

Attributes allow us to express intent and status for specific points in the topology

Partial examples for EK_PORT and EK_INTERFACE, using Google Protocol Buffer notation:

port_attr: <

  device_port_name: "port-1/24"

  openflow: <

    of_port_number: 24

  >

  port_role: PR_SINGLETON

  port_attributes: <

    physical_capacity_bps: 40000000000

  >

  dropped_packets_per_second: 3

>

interface_attr: <

  address: <

    ipv4: <

      address: "10.1.2.3"

      prefixlen: 32

    >

    ipv6: <

      address: "1111:2222:3333:4444::"

      prefixlen: 64

    >

  >

>
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Entity attributes

Attributes allow us to express intent and status for specific points in the topology

Partial examples for EK_PORT and EK_INTERFACE, using Google Protocol Buffer notation:

port_attr: <

  device_port_name: "port-1/24"

  openflow: <

    of_port_number: 24

  >

  port_role: PR_SINGLETON

  port_attributes: <

    physical_capacity_bps: 40000000000

  >

  dropped_packets_per_second: 3

>

interface_attr: <

  address: <

    ipv4: <

      address: "10.1.2.3"

      prefixlen: 32

    >

    ipv6: <

      address: "1111:2222:3333:4444::"

      prefixlen: 64

    >

  >

>

intent attributes

observed attribute
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MALT's software ecosystem

MALT's representation would be useless without a rich software ecosystem:

● Libraries to support common operations and hide some details
● Systems to automatically generate detailed models from abstract models
● Model visualization and network visualization GUIs
● A domain-specific query language
● A scalable, reliable storage system
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MALT queries

Most applications navigate small regions of a model, not an entire graph
● e.g.: generate config for a single device; figure out what fails if a rack dies

MALT has a query language to make this reasonably efficient
● It's hard to get the right tradeoff between expressive power and usability
● The raw query language is still confusing to many programmers

○ We added a layer of "canned queries" with specific semantics
■ E.g. "All L2 links between a pair of switches" or "Rack that contains a line card"

○ Canned queries also insulate clients against many kinds of schema change

● Why didn't we use SQL queries?
○ We have good reasons not to expose SQL … see the paper
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Example MALT query
# Given a device, find its geographical information and

# the ports and interfaces it contains.

cmd { find { match { id { kind: EK_DEVICE name: 'foo' }}}}

cmd 

  branch {

    # Expand backwards.

    sequence {

      cmd {

        follow_until {

          kind: RK_CONTAINS dir:DIR_BACKWARDS

          target { match { id { kind: EK_CONTINENT }}}

        }

      }

    }

    # Expand forwards.

    sequence {

      cmd {

        follow_until {

          kind: RK_CONTAINS

          target {

            match { id { kind: EK_PORT } }

 match { id { kind: EK_INTERFACE } }

          }

        }

      }

    }

  }

}
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Storage: MALTshop

We wanted a single (replicated) service for storing MALT models:
● Implement and operate just one high-availability service, not lots of them
● Promote controlled sharing between applications and teams
● Ensure there's an easy way to find anything across all of our network models

MALTshop:
● Supports zillions of named "shards" with ACLs + immutable-version semantics
● Efficient support for incremental updates, queries, etc.
● Based on Spanner for scale and geo-consistency
● Currently: thousands of shards, millions of entities/shard, 1000s of queries/sec
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This is not as easy as 
you might think
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We learned a lot of lessons, the hard way

● Schema design principles (and the need to be rigorous about them)
● Support for schema evolution
● Structure design pipelines as dataflow graphs, not shared-database updates
● Use different models for different phases of a network's lifecycle
● Migrating users from older representations (it's really hard)
● The dangers of string-parsing (it's really bad)
● Using human-readable names for entities (not our best idea)
● A good representation doesn't save you from dirty data
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We learned a lot of lessons, the hard way

● Schema design principles (and the need to be rigorous about them)
● Support for schema evolution
● Structure design pipelines as dataflow graphs, not shared-database updates
● Use different models for different phases of a network's lifecycle
● Migrating users from older representations (it's really hard)
● The dangers of string-parsing (it's really bad)
● Using human-readable names for entities (not our best idea)
● A good representation doesn't save you from dirty data

Only enough time for a few of these topics; see the paper for the others
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Schema design principles

● "Fewer entity-kinds" does not make the schema "simpler"
○ Overloaded concepts lead to ambiguity, which leads to complex/fragile code

● Instead, favor orthogonality and separation of aspects
○ Orthogonality: two "things" with mostly-disjoint attributes/relationships should be two EKs
○ Separation of aspects: complex things (e.g., routers) can be multiple EK (data plane, metal, etc.) 

● Use explicit relationships rather than name-based attributes

● Use relationship-kinds consistently
○ Otherwise, it's harder to create straightforward queries
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Schema evolution

Networks are complex and we're constantly innovating in unexpected ways
● So, the MALT schema needs to continually evolve

We use multiple processes to manage evolution:
● Curation of schema changes via expert "review board" + a written Style Guide
● "Profiles" to further constrain schema for specific parts of our networks

○ + machine-checkable profile language to enforce contract between producers + consumers

● Explicit profile versions, so consumers can evolve independent of producers
○ Automated model generation allows producers to create the same data for multiple profiles

● "Canned queries" insulate most consumers from much of our evolution

Abstraction is vital, but taxonomy is hard -- even for experts
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Why we prefer dataflow design pipelines to databases
Demand
forecast

Human
inputs

High-level
network design

Detailed L3
network design

Detailed  L1 network 
design

Automated high-level 
designer

Automated L3 
designer

Automated L1 
designer

L3 design 
rules

L1 design 
rules

Spatial 
data

Dataflow-style design pipeline

L3 
consumers

L1 
consumers
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Dataflow-style pipeline:

● Clear ownership of data at each stage

● Clear producer-consumer contracts

● Easy to create test datasets

● Easy to re-run the pipeline when things 
change

● Easy to insert validations at each step
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Dataflow-style pipeline:

● Clear ownership of data at each stage

● Clear producer-consumer contracts

● Easy to create test datasets

● Easy to re-run the pipeline when things 
change

● Easy to insert validations at each step

Database-style pipeline:

● Stages are unclear

● Ownership is global

● Fuzzy producer-consumer contracts

● Hard to create test datasets

● Hard to re-run the pipeline, because you first 
have to undo the previous updates
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Thanks!

● Automation requires both low-level detail and abstraction
● Abstraction is hard and requires support for controlled evolution
● A data-exchange format needs a full software ecosystem
● Network topology ties together all of our network management automation
● Network management: it's about the whole lifecycle, not just the running network
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