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Deep Learning at a Large Enterprise
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Deep Learning at a Large Enterprise

* Hyperparameter Optimization is typical —
train same DL model (M)
with different hyperparameters (H)
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DL Apps at a Large Enterprise

* Hyperparameter Optimization is typical —
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Deep Learning at a Large Enterprise
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GPU Cluster Scheduler: Goal
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Multiplex access to shared GPU cluster for

contending DL apps
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GPU Cluster Scheduler: Goal

Multiplex access to shared GPU cluster for
contending DL apps

Desired Goal —

Incentivize sharing of e
GPU resources -| P |- -| G|

Shared GPU cluster



GPU Cluster Scheduler: Goal
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Overview

* Existing GPU Cluster Schedulers
* Do not give Sharing Incentive
DL App Properties
* Drawbacks
* Requirements

* Themis
* Design
* Implementation
* Evaluation



Existing GPU Cluster Schedulers
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GPU Cluster Scheduler: Drawback |
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GPU Cluster Scheduler: Drawback |

* Assume Short Tasks for
Sharing Incentive

* Short Tasks allow for
frequent multiplexing




GPU Cluster Scheduler: Drawback |
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GPU Cluster Scheduler: Drawback |

SHORT RESOURCE INTENSIVE LONG TASK

— _J/
Y

long waiting time

* Long waiting time for Short

Abbs
* No Sl for Short Apps




GPU Cluster Scheduler: Requirement |

SHORT BREAK LONG TASK

schedule

e S/ fOI‘ ML APPS => short task on

- b preemption of
Preemption is necessary long task

* Allocate any task for at
most lease duration




GPU Cluster Scheduler: Drawback 2
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GPU Cluster Scheduler: Drawback 2

* DL apps have a placement
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GPU Cluster Scheduler: Drawback 2

* Attained Service is equal in
both placements
(= 4 GPUs * time)
Both placements are
equivalent

Poor placement => slower
execution time
VGG app would rather prefer

its own server
No SI

Placement |

Server |

Server 2

Placement 2

Server |

Server 2




GPU Cluster Scheduler: Drawback 2

Binary Placement
Enforcement —

Strict Consolidation (wait for
Placement 2)

Partial Progress can be made
with Placement |

Long wait time without
brogress

Sl is violated

Placement 2

Server |

Server 2
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GPU Cluster Scheduler: Requirement 2

« Sl for ML Apps =>

Fine-grained Placement
Preference




Overview

* Themis
* Design
* Implementation
* Evaluation



Towards a new GPU Cluster Scheduler
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Themis: Metric
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Themis: Metric
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Themis: Metric

Independent
GPU
Instances

Green App’s

Independent

Finish Time
Tig




Themis: Metric

Green App’s Green App’s
Independent Shared Running
Running Time Time
Tid Tsh

Primary Goal — Sharing Incentive (SI)

Ty, <=T4
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Themis: Finish-Time Fairness Metric

*p =T/ Tig
* T:finish-time of app in shared cluster
* T.4 finish-time of app in exclusive I/N share of cluster
* N:Average contention during app lifetime



Themis: Finish-Time Fairness Metric

* Sl: for all apps, p <= |



Themis: Finish-Time Fairness Metric

* Fine-Grained Placement Preferences —
* Excessive queueing or bad placements worsens T, and hence p



Themis: Metric
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Themis: Interface
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Themis: Interface

* Key Purpose: Enable book-keeping of p

* Who calculates p — the app or the scheduler?



Themis: Interface

* DL App = Managed by
an Hyperparameter Optimizer
(Hyperparam-Opt) like Google Vizier



Themis: Interface

* Launch several DL jobs with
different Hyperparameters H.

s

>y



Themis: Interface

Hyperparam-Opt
PP Allocation Logic

* GPU allocation, G;, within jobs
decided by Hyperparam-Opt



Themis: Interface
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I |
Hyperparam-Opt poor good ok

Termination Logic

terminate
at time,
* Track training accuracy of each job and

classify jobs as poor, ok and good

* Estimate finish time of each job trained model
at time,

terminate
at timey



Themis: Interface

App’s Hyperparam-Opt tracks
per-job progress

App does calculation of p

Scheduler pulls updated values
of p from the Agent co-located
with App’s Hyperparam-Opt

Details in the paper

38



Towards a new GPU Cluster Scheduler
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Towards a new GPU Cluster Scheduler

Metric =
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Themis: Mechanism

Key Goal: Sharing Incentive
Sl: for all apps, p <= |
Difficult to guarantee with online arrivals

Our focus: min (max p):
empirically keeps p’s = | without admission control



Strawman Mechanism

Server | Server 2
Sl Objective — min (max p) - | [P =) eyl | [Pl ; (6]
| & || @ |- ! | @ |2 @ | | @ 2| @ |
Red GPUs
become
available
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Strawman Mechanism

Server | Server 2
S| Objective — min (max p) | B e [EIEEEEIE
| &P || P - @ 0 || | | 6P | [ |
Interface: Get p estimates from all apps Red GPUs
become
available
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Strawman Mechanism

Server | Server 2

S| Objective — min (max p) | @) o | @)

Interface: Get p estimates from all apps Red GPUs

become
available

Sort in decreasing order of p
Allocate to app with highest p (green app) for lease duration

44



Strawman Mechanism: Issues

Server | Server 2
. - g [GPU] § [GPU] [GPU] § [GPU]
- | & || e |- ! | @ [-| @0 || @ || @ |

| Inefficient Allocation — Red GPUs are not co-located with Green Apps GPUs

2. Lying Apps — Apps can lie with high p values to hoard GPU resources

Sort in decreasing order of p
Allocate to app with highest p (green app) for lease duration
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Themis: Mechanism

Server | Server 2

S| Objective — min (max p) | @ |2 EEEEEIEE

Red GPUs
become

#\ , available
\.

g
i f
|. Filter | — fapps with max p values
2. Allocate to one or more of | — f apps for lease duration

using Partial Allocation Auctions
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Themis: Mechanism

Server | Server 2
- § [GPU] § [GPU] [GPU] § [GPU]
- | 6P || P |- ! | @ || 6| G || e |

f = 0 => More apps to allocate resources =>
Better opportunity to match placement preference of apps to resources.
Our sensitivity analysis suggests f = 0.8 gives a good tradeoff.

Incentivizes truth telling of p

|. Filter | — fapps with max p values
2. Allocate to one or more of | — f apps for lease duration
(Red GPUs can potentially go to Blue App) using Auctions



Themis: Mechanism: Partial Allocation Auction

Server | Server 2
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Themis: Mechanism: Partial Allocation Auction

* Input:Valuation Tables from filtered apps
* Pareto efficiency (PE) — max []; 1/p; ,..w — Proportional fair allocations

* Strategy Proofness (SP) —Allocate a fraction of this per app for lease
duration — rest is “hidden payment”

* More lying => higher hidden payments => incentivizes truth-telling

* Leftover Allocation — Allocate hidden payments to unfiltered apps at
random to avoid unallocated resources and enable work conservation



Themis: Overall Design

Hyperparam-opt at the
top

Agent:
Shim layer added to
Apps to enable interaction

gestimate p, make bids) with
cheduler

Scheduler:
Finish-Time Fair Metric (p);

Mechanism:
S| + PE + SP

Appr )

AGENT

S u—
Receive

Allocation
—

Make Bids

)

Give p
Estimates

Ask all

apps for p
estimates

Appm

Apps make bids

4

Offers

to subset
of apps

Allocate
Winning
Bids
Res. Alloc. Prew
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Themis: Implementation

App; ) Appm
Hyperparam-opt at the> (_ﬁ_\ H
top AGENT
S
Receive
Allocation .
Agent: . I —— Apps make bids Allocate
Shim Iayer added to . > Submarine Make Bids Winning
Apps to enable interaction| AM — Bids
with Scheduler Give p
Estimates
\;)/ n Res. Alloc. Prnew
_ 0 Pold
Scheduler: Askfall Of M;:2G  |pga- 26
Finish-Time Fair Metric; apps for p Crs ) ) -
estimates to subset MllG,leG Pold o)
Mechanism: I'|EldC>OP of apps N
S| + PE + SP 320

YARN RM [ THEMIS SCHEDULER ]
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Themis: Evaluation

e 20 machine, 64 GPU cluster
* 8 instances each with 2 Tesla K80 GPUs and
* |2 instances each with 4 Tesla K80 GPUs

* A publicly available trace of DL apps from Microsoft

* Baselines:
* Tiresias — Least Attained Service Job First
* Optimus — Best Throughput Scaling First
* Gandiva — Best Packing Job First
* SLAQ — Best Loss Gradient Job First



Macrobenchmark: Sharing Incentive

* CDF of p for all
apps in the
workload

*max p = .2 (~I)
with Themis
* p distribution has

long tail without
Themis
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Macrobenchmark: Efficiency

] Greedy-local vs.
* GPU Time to execute globally-optimal packing

workload 1400-

e Themis better than
Gandiva

e Auctions enable
globally optimal
packing

GPU Time (hours)

Themis Gandiva SLAQ Tiresias Optimus
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Sensitivity Analysis/Tradeoffs

* max finish-time fair
metric (p) and
GPU time for
different values of
fairness knob (f)
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Sensitivity Analysis/Tradeoffs

* max finish-time fair
metric (p) and
GPU time for
different values of
fairness knob (f)

e f = 0.8 maximizes
sharing incentive
without degrading
efficiency
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S 500 e
e
O
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0.00
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Sub-optimal
placement
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Conclusion

* Consolidation of GPUs => Sharing Incentive is key
* DL App properties => existing schedulers violate SI
* Themis proposes a new metric finish-time fairness that captures Sl

* Filtering + Partial Allocation Auctions => Themis performs better
than existing schedulers on Sl and Efficiency



