ILLINOIS CSL | Coordinated Science Lab COLLEGE OF ENGINEERING

Saurabh Jha¹, Archit Patke¹, Jim Brandt², Ann Gentile², Benjamin Lim¹, Mike Showerman^{1,3}, Greg Bauer^{1,3}, Larry Kaplan⁴, Zbigniew T. Kalbarczyk¹ and William T. Kramer^{1,3}, Ravishankar K. Iyer^{1,3}

¹University of Illinois at Urbana-Champaign ²Sandia National Laboratories

³National Center for Supercomputing Applications ⁴Cray Inc.

Measuring Congestion in High-Performance Datacenter Interconnects

High-Performance Computing (HPC)

HPC solves critical science, finance, AI, and other problems

High-Performance Computing (HPC)

HPC solves critical science, finance, AI, and other problems

csl.illinois.edu

High-Performance Computing (HPC)

High-speed Networks (HSN)

- Low per-hop latency [1][2]
- Low tail-latency variation
- High bisection bandwidth

[1] https://www.nextplatform.com/2018/03/27/in-modern-datacenters-the-latency-tail-wags-the-network-dog/ [2] https://blog.mellanox.com/2017/05/microsoft-enhanced-azure-cloud-efficiency/

Networking and Performance Variation

Despite the low-latency, high-speed networks (HSN) are susceptible to high congestion

Such congestion can cause up to 2-4X application performance variation in production settings

time=1199 90 80 20 60 50 40 30 20 10 Z Mesh Coord 15 10 5 20 20 15 15 10 10 5 5 X Mesh Coord Y Mesh Coord

X+ Gemini Link: Percent Time Spent in Credit Stalls (1 min intervals

1000-node production molecular dynamics code.

Up to $1.89 \times$ slowdown compared to median runtime of 282 minutes

256-node benchmark app (AMR)

Up to $4 \times$ slowdown compared to the median loop iteration time of 2.5 sec

4

COLLEGE OF ENGINEERING

Networking and Performance Variation

Despite low-latency, high-speed networks (HSN) susceptible to high congestion

Such congestion can lead to up to 2-3X application performance variation in production settings

Questions:

- How often system/applications are experiencing congestion ? [Characterization]
 - What are the culprits behind congestion? [Diagnostics]
- How to avoid and mitigate effects of congestion ? [Network and System Design]

csl.illinois.edu

Highlights

- Created data mining and ML-driven methodology and associated framework for
 - Characterizing network design and congestion problems using empirical data
 - Identifying factors leading to the congestion on a live system
 - Checking if the application slowdown was indeed due to congestion
- Empirical evaluation of a real-world large-scale supercomputer: Blue Waters at NCSA
 - Largest 3D Torus network in the world
 - 5 months of operational data
 - 815,006 unique application runs
 - 70 PB of data injected into the network
- Largest dataset on congestion (first on HPC networks)
 - Dataset (51 downloads and counting!) and code released

Key Findings

- HSN congestion is the biggest contributor to app performance varia:
 - Continuous presence of high congestion regions
 - Long lived congestion (may persist for >23 hours)
- Default congestion mitigation mechanism have limited efficacy
 - Only 8 % (261 of 3390 cases) of high congestion cases found using our framework were detected and acted by default congestion mitigation algorithm
 - In ~30% of the cases the default congestion mitigation algorithm was unable to alleviate congestion
- Congestion patterns and their tracking enables identification of culprits behind congestion
 - critical to system and application performance improvements
 - E.g., intra-app congestion can be fixed by changing allocation and mapping strategies

Congestion in credit-based flow control Network

- Focus on evaluation of credit-based flow control transmission protocol
- Flit is the smallest unit of datum that can be transferred
- Flits are not dropped during congestion
- Backpressure (credits) provides congestion control

Measuring Congestion

Congestion measured using **Percent time stalled** (P_{Ts})

$$P_{Ts}^{i} = 100 \times \frac{T_{s}^{i}}{T^{i}} = 100 \times \frac{5}{12} = 41.67 \%$$

 T^{i} : # network cycles in i^{th} measurement interval (fixed value)

 T_s^i : # total cycles the link was stalled in T^i (i.e., flit was ready to be sent but no credits available.)

Congestion in credit-based flow control Network

Insight: Congestion spreads locally (i.e., fans out from an origin point to other senders).

csl.illinois.edu

Congestion in credit-based flow control Network

New unit for measuring congestion

Measure congestion in terms of regions, their size and severity

csl.illinois.edu

Congestion Regions Proxy for Performance Evaluation

Congestion Regions (CRs) captures relation between congestion severity and application slowdown and therefore can be used for live forensics and debugging! (details in paper)

Med: $15\% < P_{Ts} \le 25\%$

csl.illinois.edu

System, Monitors, and Datasets

- **Topology:** 3D Torus (24x24x24)
- **Compute nodes :** 28K nodes
- Avg. Bisection Bandwidth: 17550 GB/sec
- Per hop latency: 105 ns [1]

[1] https://wiki.alcf.anl.gov/parts/images/2/2c/Gemini-whitepaper.pdf

System, Monitors, and Datasets

[2] A. Agelastos et al. Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Monitoring of Large-scale Computing Systems and Applications. In *SC14: International Conference for High Performance Computing, Networking, Storage and Analysis*, pages 154–165, 2014.

[1] https://wiki.alcf.anl.gov/parts/images/2/2c/Gemini-whitepaper.pdf

csl.illinois.edu

1. Congestion is the biggest contributor to app performance variation

Long-lived congestion

- Congestion Region can persist up to ~24 hours (median: 9.7 hours)
- Congestion Region count decreases with increasing duration

CR Duration (mins)

Low: $5\% < P_{Ts} \le 15\%$ Med: $15\% < P_{Ts} \le 25\%$ High: $25\% < P_{Ts}$

16 COLLEGE OF ENGINEERING

2. Limited efficacy of default congestion detection and mitigation mechanisms

- *#congestion mitigating triggered : 261*
- Median time between events: 7 hours

• Failed to alleviate congestion in 29.8% cases

Default mitigation throttles all NICs such that

aggregate traffic injection bandwidth across all nodes < single node bandwidth ejection

Default system congestion detection and mitigation

Before congestion mitigation

After congestion mitigation

17 COLLEGE OF ENGINEERING

2. Limited efficacy of default congestion detection and mitigation algorithms

- Default congestion mitigating triggered : 261
- Median time between events: 7 hours
- Failed to alleviate congestion in 29.8% of the cases

Default system congestion detection and mitigation

Monet detection

Only 8 % (261 of 3390 cases) of high congestion cases found by Monet were detected and acted by default congestion mitigation algorithm

18 COLLEGE OF ENGINEERING

3. Congestion patterns and their tracking enables identification of culprits behind congestion

- Network design and congestionaware scheduling
- E.g., topology-aware scheduling

 [1] improved system throughput
 by 56% by tuning resource
 allocation strategies

19

COLLEGE OF ENGINEERING

[1] J Enos et al. Topology-aware job scheduling strategies for torus networks. In Proc. Cray User Group, 2014.

3. Congestion patterns and their tracking enables identification of culprits behind congestion

- Node mapping within the allocation reduces intra-app congestion
 E.g. TopoMapping [2] for finding
 - E.g., TopoMapping [2] for finding optimal process rank mapping for the allocated resource

20

COLLEGE OF ENGINEERING

[2] Galvez et al. Automatic topology mapping of diverse large-scale parallel applications. In Proceedings of the International Conference on Supercomputing, ICS '17, pages 17:1–17:10, New York, NY, USA, 2017. ACM.

Conclusion

• Developed and validated the proposed methodology on production datasets

- Code and dataset online (51 downloads and counting!)
 - https://databank.illinois.edu/datasets/IDB-2921318
 - https://github.com/CSLDepend/monet

Future Work

Congestion avoidance and mitigation is an ongoing problem !

Developing workload-aware high-speed networks

- Inferring and meeting application demands
- Optimizing congestion control and routing strategies

Meet us at the poster session!

Wednesday 6:30 PM - 8:00 PM

Cypress Room

Congestion Visualization on a production Cray Aries (DragonFly Network)

22 COLLEGE OF ENGINEERING

Questions?

csl.illinois.edu