TCP=RDMA: CPU-efficient
Remote Storage Access with i10

Jaehyun Hwang Qizhe Cai Ao Tang Rachit Agarwal

Cornell University

i10 Motivation: Two trends in Remote 1/0O

Intra-rack Network
Fabric

L —

O Bandwidth (Gbps)
100
0 ack Netwo

2005 2010

1
I
I
I

————— ——— -y

 Move from SCSI to NVMe
 Emergence of NVMe SSDs:

1. High-throughput NVMe SSD,

« >1M IOPS (read), >400K IOPS (write)

high-bandwidth access links

storage via Remote 1/0O

What do these trends mean for Remote 1/0?

» Software stack (iSCSI) performance e Storage + network overlap
TCP/IP Storage Storage
3 1000 Remote I/0O
e
S 800 TCP/IP
gg 600
& o= 400
----'- - B m _
70K 10PS S 0 —
Long-lived Locall/O Remote l/O
Bottlenecks pushed back to Bottlenecks at the boundary of

0S, software stack! storage and network stacks!

Previous Approaches

Applications

User-level stacks

User
space User-level I/O engines
Storage
Remote I/O
Kernel -
TCP/IP
NIC driver
HW - | NIC RDMA-NIC | -

User-space storage and network stacks

— Storage + Remote I/0 (user) + DPDK
— Performance: Good!

In-Kernel (NVMe-over-TCP)
— Storage + Remote I/O + TCP (all in the kernel)
— Performance: Not-so-good!

C Fundamental?]

NVMe-over-RDMA
— Storage + Remote I/O (kernel) + RDMA
— Performance: Good!

30

20

10

Remote Storage Access Overheads: TCP vs. RDMA

CPU Usage (%)

B NVMe-over-TCP B NVMe-over-RDMA

NVMe NVMe
TCP RDMA
Storage S S
Remote I/O S

TCP/IP

FREIT P

Apps @IkTX BIkR)DCNetTX NetRX) Idle Others

Storage stack Network stack

[Network processing overhead!]

e v 4

[Context switching overhead!]

110 Summary

* A new remote I/0 stack implemented entirely in the kernel
— No changes in apps, no changes in TCP/IP stack, no changes in hardware

* Throughput-per-core similar to NVMe-over-RDMA
— Latency within 1.7x of RDMA (for SSD accesses)

Minimize network processing
* Three simple ideas

. — Delayed doorbells: Interrupt coalescing :

%_/ Minimize context switching

i10-lane: Dedicated per-(core, target) pair “pipe”

App.

NVMe SSD

NIC

[Target]

User space

Kernel

Per-core block queues

: Dedicated i10 queues

Dedicated TCP buffers

i10-lane: Dedicated per-(core, target) pair “pipe”

| APp. |
[B] l'?l [B]User space
---:--{ 1/O syscalls]-----------E- ----------------------------
I Kernel
v v | v
[Block]
)
[TCP/IP]
NVMeSSD | | NIC |mmmms NIC T NIC | | NVMe SSD

[Target] [Host] [Target2]

i10-lane: Why per-(core, target) pair lanes?

* Per-target: Too much contention

* Per-core: Fewer batching opportunities

Targetl

All requests in each i10 queue are destined
to the same target over the same TCP connection

110 Caravans: i1l0-lanes enable efficient batching

(

\.

Significantly reduce per-byte
network processing overhead!

~\

J

one socket call

per caravan

Sockets

min

NIC

[Host]

NIl

Caravan

- (~64KB)

Allow larger payloads
up to 64KB using TSO

No CPU cycles for
packet segmentation

Context switching in Remote I/0 (without i10)

App.
: l'?l User space
-------------- —-{ /0 syscalls]---------------------------------------
| I Kernel

[Block]
[

(1-3us per request)

& [High thread switching overhead!]

NVMe SSD NIC NIC

[Target] [Host]

Delayed doorbells: Minimizing context switching

App.
l'?l User space
-------------- —-{ 1/0O syscalls]---------------------------------------
I Kernel

[Block]
4 N

I & Ring doorbell only after

“caravan size” worth of requests
G y

f Y

[110] i
Under low loads, use a timer

~_ (e.g., 50us)

[TCP/IP]

NVMe SSD NIC [mmmE] NI

[Target] [Host]

i10 Evaluation Setup

* Two 24-core servers connected directly

 100Gbps Mellanox CX-5
« No switches in middle — ensure bottlenecks in the kernel

e NVMe-device at both servers
e ~700k IOPS (read), ~400k IOPS (write)

e ~100us read latency

* No specialized hardware functionalities used in i10 evaluation

* For hardware and software configuration, see the paper.

i10 Evaluation: how does i10 performance ...

e ...compare to NVMe-over-RDMA?

— Metrics of interest: throughput per core, average latency, tail latency

Pléase see our paper!
* 'What dowelexqpect:from FCP=RDIA 2 [225her Why co youhave

the same answers ?

Student : because we have
the same questions
[Throughput] [Latency]

Teacher :

' -
L Y

* ...depend on various design aspects (lanes, caravans, delayed doorbell)?

Answer: , Comparable Gy " Not terrible €
(or better) (<1.7X)

e ...scale with number of cores?

Single core performance

99th Latency (us)

“lll..

~96k 213k ~225K ¥,
10°} : :
16%‘!' -ll;‘
SSD ~ —4—NVMe-TCP
access —A— NVMe-RDMA 1
latency . —e—i10 -
1 1 1 1 1 s
100 50 100 150 200 250
Throughput (kIOPS)
NVMe SSD

TCP = RDMA:
e Throughput: Comparable
e Tail latency: <1.7X

300

)

N

o
w

99th Latency (us

“"—o‘.
)

High load latency: TCP = RDMA

“"‘--.....'00
~122k o0 ~228k ~269k e,

0 5‘0 100 150 200 250 300
Throughput (kIOPS)

RAM block device

TCP = RDMA:
e Throughput: Comparable (or better)
e Tail latency: +97us

Scalability with number of cores

4000

N W
) -
o o
o o

Throughput (kIOPS)
S
o
o

0 5 10 15 20 25
Number of cores

RAM block device

TCP = RDMA:
e Throughput: Scales similar (~14 cores) or better
e Seems related to hardware scalability

Benefits from individual desigh components

B i10-lane | TSO/GRO + Jumbo i10 Caravans [Delayed Doorbells

3000
2 2500 0 O
S | =
X 2000 B
§. 1500 38.2%

. o
g -

1000 S LLLLL LI
£ — B 1a0%
— 500 E—

S — = 24.5%
O — s 2 EEEE 090 B0 EEEE 000 O
1 2 4 8 16
#Cores

Each of the design component contributes to i10 performance

Understanding performance improvement

CPU Usage (%)

B NVMe-over-TCP B i10 with caravans [i10 with caravans+delayed doorbells
40

30
20
10

24,
A
v

0
Apps Blk TX Blk RX Net TX Net RX Idle Others

(scheduling overhead, etc.)

i10 improves over NVMe-over-TCP by using
Fewer cycles for network processing (Net Tx/Rx) and scheduling (Others)
More cycles for Applications, and block layer operations (Blk Tx/Rx)

R — R

Kernel implementation
Further evaluation
Test scripts ...

All are available at:

https://github.com/i10-kernel/

