
TCP≈RDMA:	CPU-efficient	
Remote	Storage	Access	with	i10

Jaehyun	Hwang Qizhe	Cai Rachit	AgarwalAo	Tang

i10	Motivation:	Two	trends	in	Remote	I/O

• Move	from	SCSI	to	NVMe	
• Emergence	of	NVMe	SSDs:	

• >1M	IOPS	(read),	>400K	IOPS	(write)

2020

1.	High-throughput	NVMe	SSD,	
				high-bandwidth	access	links

2.	Apps	use	disaggregated	
				storage	via	Remote	I/O

What	do	these	trends	mean	for	Remote	I/O?

Bottlenecks	pushed	back	to	
OS,	software	stack!

70K	IOPS 1M	IOPS 2.8M	IOPS

• Software	stack	(iSCSI)	performance • Storage	+	network	overlap

0
200
400
600
800

1000

Long-lived Local I/O Remote I/OPe
r-

co
re

 T
hr

ou
gh

pu
t

(k
IO

PS
)

TCP/IP Storage Storage

Remote	I/O

TCP/IP

Bottlenecks	at	the	boundary	of	
storage	and	network	stacks!

~30Gbps

User-space	storage	and	network	stacks	
– Storage	+	Remote	I/O	(user)	+	DPDK	

– Performance:	Good!

Storage

Remote	I/O

TCP/IP

NIC	driver

User
space

Kernel

Storage

Remote	I/O

TCP/IP

NIC	driver

NIC RDMA-NIC

NVMe-over-RDMA	
– Storage	+	Remote	I/O	(kernel)	+	RDMA		

– Performance:	Good!

Previous	Approaches

In-Kernel	(NVMe-over-TCP)	
– Storage	+	Remote	I/O	+	TCP	(all	in	the	kernel)	

– Performance:	Not-so-good!

H/W

User-level	stacks

User-level	I/O	engines

Applications

TCP/IP

NIC	driver
Fundamental?

CPU Usage (%)

Remote	Storage	Access	Overheads:	TCP	vs.	RDMA

0

10

20

30

Apps Blk	TX Blk	RX Net	TX Net	RX Idle Others

NVMe-over-TCP NVMe-over-RDMA

Storage	stack Network	stack

Storage

Remote	I/O

TCP/IP

NIC

NVMe	
TCP

NVMe	
RDMA

Network	processing	overhead! Context	switching	overhead!

i10	Summary
• A	new	remote	I/O	stack	implemented	entirely	in	the	kernel	

– No	changes	in	apps,	no	changes	in	TCP/IP	stack,	no	changes	in	hardware	

• Throughput-per-core	similar	to	NVMe-over-RDMA	
– Latency	within	1.7x	of	RDMA	(for	SSD	accesses)	

• Three	simple	ideas	
– i10-lane:	dedicated	resources	
– i10-caravans:	request	and	data	batching	

– Delayed	doorbells:	Interrupt	coalescing

Minimize	network	processing

Minimize	context	switching

Block

i10

TCP/IP

i10-lane:	Dedicated	per-(core,	target)	pair	“pipe”

Kernel

User	space

App.

I/O	syscalls

NVMe	SSD

i10-lane

[Target] [Host]

NIC NIC

Per-core	block	queues

Dedicated	i10	queues

Dedicated	TCP	buffers

Block

i10

TCP/IP

i10-lane:	Dedicated	per-(core,	target)	pair	“pipe”

Kernel

User	space

App.

I/O	syscalls

[Target2]

NVMe	SSD

[Target] [Host]

NIC NVMe	SSDNIC NIC

i10-lane:	Why	per-(core,	target)	pair	lanes?

• Per-target:	Too	much	contention	

• Per-core:	Fewer	batching	opportunities

Target2Target1Target1 Target2 Target1 Target2

All	requests	in	each	i10	queue	are	destined	
to	the	same	target	over	the	same	TCP	connection	

Block

i10

i10	Caravans:	i10-lanes	enable	efficient	batching

Block

i10

TCP/IP

Kernel

User	space

App.

I/O	syscalls

[Target2]

NVMe	SSD

[Target] [Host]

NIC NVMe	SSDNIC NIC

Sockets
Allow	larger	payloads	
up	to	64KB	using	TSO	

No	CPU	cycles	for	
packet	segmentation

Significantly	reduce	per-byte	
network	processing	overhead!

caravan	
(~64KB)

one	socket	call	
per	caravan

Block

i10

TCP/IP

Kernel

User	space

App.

I/O	syscalls

NVMe	SSD

[Target] [Host]

NIC NIC

Context	switching	in	Remote	I/O	(without	i10)

High	thread	switching	overhead!	
(1-3us	per	request)

Block

i10

TCP/IP

Delayed	doorbells:	Minimizing	context	switching

Kernel

User	space

App.

I/O	syscalls

NVMe	SSD

[Target] [Host]

NIC NIC

Ring	doorbell	only	after	
“caravan	size”	worth	of	requests

Under	low	loads,	use	a	timer	
	(e.g.,	50us)	

i10	Evaluation	Setup
• Two	24-core	servers	connected	directly	

• 100Gbps	Mellanox	CX-5	

• No	switches	in	middle	—	ensure	bottlenecks	in	the	kernel	

• NVMe-device	at	both	servers	
• ~700k	IOPS	(read),	~400k	IOPS	(write)	

• ~100us	read	latency	

• No	specialized	hardware	functionalities	used	in	i10	evaluation	
• For	hardware	and	software	configuration,	see	the	paper.

i10	Evaluation:	how	does	i10	performance	…
• …	compare	to	NVMe-over-RDMA?	

– Metrics	of	interest:	throughput	per	core,	average	latency,	tail	latency	

• …	compare	to	user-space	stacks?	

• …	vary	with	different	workloads,	hardware	and	applications?	
– read/write	ratios	
– Delayed	doorbell	timer	

– Aggregation	size	

– I/O	Request	sizes	

– Storage	device	access	latency	

– Real	applications	

– Number	of	target	devices	

• …	scale	with	number	of	cores?	

• …	depend	on	various	design	aspects	(lanes,	caravans,	delayed	doorbell)?

Throughput Latency

Comparable	
(or	better)

Not	terrible	
(<1.7X)

Answer:

• What	is	the	best	case	performance?• What	do	we	expect	from	TCP	≈	RDMA	?
Please	see	our	paper!

TCP	≈	RDMA:	

• Throughput:	Comparable	
• Tail	latency:	<1.7X

Single	core	performance

NVMe SSD

~96k ~213k ~225k ~122k ~228k ~269k

SSD
access
latency

RAM block device

TCP	≈	RDMA:	

• Throughput:	Comparable	(or	better)	
• Tail	latency:	+97us

High load latency: TCP ≈ RDMA

0 50 100 150 200 250 300

Scalability	with	number	of	cores

RAM block device

TCP	≈	RDMA:	

• Throughput:	Scales	similar	(~14	cores)	or	better	

• Seems	related	to	hardware	scalability

0

500

1000

1500

2000

2500

3000

1 2 4 8 16

i10-lane TSO/GRO + Jumbo i10 Caravans Delayed Doorbells

#Cores

Each	of	the	design	component	contributes	to	i10	performance

Benefits	from	individual	design	components

Th
ro

ug
hp

ut
 (k

IO
P

S
)

24.5%

14.0%

38.2%

23.2%

CPU Usage (%)

i10	improves	over	NVMe-over-TCP	by	using	
Fewer	cycles	for	network	processing	(Net	Tx/Rx)	and	scheduling	(Others)	
More	cycles	for	Applications,	and	block	layer	operations	(Blk	Tx/Rx)

Understanding	performance	improvement

0

10

20

30

40

Apps Blk TX Blk RX Net TX Net RX Idle Others

NVMe-over-TCP i10 with caravans i10 with caravans+delayed doorbells

(scheduling overhead, etc.)

-24.8

-6.4

-14.15

Kernel	implementation	
Further	evaluation	

Test	scripts	…
All	are	available	at:	

https://github.com/i10-kernel/

