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i10 Motivation: Two trends in Remote 1/0O
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 Move from SCSI to NVMe
 Emergence of NVMe SSDs:

1. High-throughput NVMe SSD,

« >1M IOPS (read), >400K IOPS (write)

high-bandwidth access links

storage via Remote 1/0O




What do these trends mean for Remote 1/0?
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Previous Approaches
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User-space storage and network stacks

— Storage + Remote I/0 (user) + DPDK
— Performance: Good!

In-Kernel (NVMe-over-TCP)
— Storage + Remote I/O + TCP (all in the kernel)
— Performance: Not-so-good!

C Fundamental? ]

NVMe-over-RDMA
— Storage + Remote I/O (kernel) + RDMA
— Performance: Good!
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[ Network processing overhead! ]
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110 Summary

* A new remote I/0 stack implemented entirely in the kernel
— No changes in apps, no changes in TCP/IP stack, no changes in hardware

* Throughput-per-core similar to NVMe-over-RDMA
— Latency within 1.7x of RDMA (for SSD accesses)

Minimize network processing
* Three simple ideas

. — Delayed doorbells: Interrupt coalescing :

%_/ Minimize context switching



i10-lane: Dedicated per-(core, target) pair “pipe”
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: Dedicated i10 queues

Dedicated TCP buffers



i10-lane: Dedicated per-(core, target) pair “pipe”
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i10-lane: Why per-(core, target) pair lanes?

* Per-target: Too much contention

* Per-core: Fewer batching opportunities

Targetl

All requests in each i10 queue are destined
to the same target over the same TCP connection




110 Caravans: i1l0-lanes enable efficient batching
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Context switching in Remote I/0 (without i10)
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Delayed doorbells: Minimizing context switching
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i10 Evaluation Setup

* Two 24-core servers connected directly

 100Gbps Mellanox CX-5
« No switches in middle — ensure bottlenecks in the kernel

e NVMe-device at both servers
e ~700k IOPS (read), ~400k IOPS (write)

e ~100us read latency

* No specialized hardware functionalities used in i10 evaluation

* For hardware and software configuration, see the paper.



i10 Evaluation: how does i10 performance ...

e ...compare to NVMe-over-RDMA?

— Metrics of interest: throughput per core, average latency, tail latency

Pléase see our paper!
* 'What dowelexqpect:from FCP=RDIA 2 [225her Why co youhave

the same answers ?

Student : because we have
the same questions
[ Throughput ] [ Latency ]

Teacher :

' -
L Y

* ...depend on various design aspects (lanes, caravans, delayed doorbell)?

Answer: , Comparable Gy " Not terrible €
(or better) (<1.7X)

e ...scale with number of cores?



Single core performance
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TCP = RDMA:
e Throughput: Comparable (or better)
e Tail latency: +97us



Scalability with number of cores
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TCP = RDMA:
e Throughput: Scales similar (~14 cores) or better
e Seems related to hardware scalability



Benefits from individual desigh components
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Each of the design component contributes to i10 performance



Understanding performance improvement

CPU Usage (%)
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(scheduling overhead, etc.)

i10 improves over NVMe-over-TCP by using
Fewer cycles for network processing (Net Tx/Rx) and scheduling (Others)
More cycles for Applications, and block layer operations (Blk Tx/Rx)
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Kernel implementation
Further evaluation
Test scripts ...

All are available at:

https://github.com/i10-kernel/



