Ghostor: Toward a Secure Data-Sharing
System from Decentralized Trust

*Yuncong Hu, *Sam Kumar, and Raluca Ada Popa

University of California, Berkeley

*Co-primary authors

Berkeley <rise

Motivating Example: Medical Record System

Oncologist

Storage Server

Threat Model

Oncologist

Read File A

Write File B

Storage Server

Existing Systems rely on Centralized Trust

Central Point
of Trust!

Read File A Write File B

Adversary can:

e See files and who
accesses them Storage Server

e Serve old or
modified data

Oncologist

End-to-End Encryption [CFs, SiRiUS, Plutus, etc.]

Storage Server &

ACL: | Bob, Oncologist

File A:

FileB: |== == === = = = = = =
Oncologist

P

Content:

Privacy Leakage in E2EE Data Sharing

Storage Server Q'

Alice has access to File B
Oncologist has access to File B
Alice accesses File B
Oncologist accesses File B

Alice has cancer!

ACL: | Alice, Oncologist
FileB: | == === == = = = = = =

. —
Oncologist Content: “ 7

6

Ghostor: Cryptographic Data-Sharing System

* Anonymity

* Verifiable Linearizability

Ghostor: Cryptographic Data-Sharing System

* Anonymity

* Verifiable Linearizability

Privacy Leakage in E2EE Data Sharing

Storage Server Q'

Alice has access to File B
Oncologist has access to File B
Alice accesses File B
Oncologist accesses File B

Alice has cancer!

ACL: | Alice, Oncologist
FileB: | == === == = = = = = =

. —)
Oncologist Content: “ 7

9

E2EE Data Sharing vs. Ghostor’s Anonymity

Storage Server Q

Alice has access to File B
Oncologist has access to File B
Alice accesses File B
Oncologist accesses File B

Alice has cancer!

Oncologist

E2EE Data Sharing

E2EE Data Sharing vs. Ghostor’s Anonymity

Storage Server Q ﬂ Storage Server Q'

Alice has access to File B Alice UNKNOWN has access to File B
Oncologist has access to File B UNKNOWN accesses File B

Alice accesses File B UNKNOWN accesses File B
Oncologist accesses File B '
What files did Alice access?
Is she part of the system?

Alice has cancer!

Oncologist Oncologist

E2EE Data Sharing Ghostor’s Anonymity

11

E2EE Data Sharing vs. Ghostor’s Anonymity

Storage Server Q ﬂ Storage Server Q'

Alice has access to File B UNKNOWN has access to File B
Oncologist has access to File B UNKNOWN accesses File B
Alice accesses File B UNKNOWN accesses File B

Oncologist accesses File B @
i e -
i I / What files did Alice access?
Allce haS cancer: Is she part of the system?

Oncologist

E2EE Data Sharing Ghostor’s Anonymity

12

Ghostor-MH is a theoretical

E2EE Data Sharing vs. Ghostor’s Anonymity
|
scheme that also hides

Storage Server Q access patterns (see paper) |

Alice has access to File B \ wccs to File B
Oncologist has access to File B UNKNOWN accesse} File B
Alice accesses File B UNKNOWN accesses\File B

Oncologist accesses File B @
i e -
i I / What files did Alice access?
AIICE haS cancer: Is she part of the system?

Oncologist

E2EE Data Sharing Ghostor’s Anonymity

13

Ghostor: Cryptographic Data-Sharing System

* Anonymity

* Verifiable Linearizability

Verifiable Linearizability

ﬂ Allergic to X G

Oncologist

(st

Storage Server

. £

File B:

: | Alice, Oncologist

15

Verifiable Linearizability

Storage Server &

‘ No allergy a
- ACL: [Alice, Oncologist

File B:

Oncologist User can detect if he

@ receives anything other
than the latest write

16

Comparison to Existing Work

[\/erena [KFPC16]: Verifiable
Linearizability

AnonymousCloud [KH12]:
@nonymity

~N

v

Rely on Central Trust

* Split server into two
parts and assume one is
honest, or

* Assume semi-honest
adversary

Ghostor

Anonymity and
Verifiable Linearizability

Based on Decentralized Trust
* Avoids placing trust in a
few central machines

17

Bootstrapping Decentralized Trust

Blockchain

Transparency Logs
L]

7
ST
-/
.\
7
[-]

&
=R
~EEN
8
~EEN
=

S EIN
. mEid

Peer-to-Peer

| p—
/ AN
- b
AN /
| —

Lo

Bootstrap

Storage System
based on
Decentralized Trust

Strawman: Use a Blockchain Blockchain

Expensive!

read, write,
create files

/¥

Ghostor

Client

User’s Machine

19

Ghostor’s System Architecture Blockchain

One checkpoint for the entire
system once per epoch

Ghostor
Storage Server

—

S~
checkpoint

Cla[e] summary of
Client operations

User’s Machine

20

Verifiable History (Strawman)

Blockchain

Checkpoint: Epoch 1

Hash(Latest Digest)

Server Storage

Signed by Signed by Signed by
Server Server Server

End of Epoch 1

Signed by
Server

e History for each object is e L
recorded as a hash chain of Alice’s Client
digests

e History is committed to

blockchain at the end of each Signed Signed by
EDOCh by Server Server

Doctor’s Client

Signed by I Signed by

Server Server

How to make Verifiable History Anonymous?

* Signing keys are like capabilities
 |dea: have different users share capabilities for each object

Shared Capabilities
Permission Signing Key ”

PSK

Stored by the
object’s owner

Reader Sighing Key h
Writer Signing Key h

-

-

Anonymously Distributed

~

Shared Capabilities

J

Key-Private Encryption

Header:

Content:

> |

RSK
: Paddmi

P KDoctor

Object Dataa

JAAN

Might reveal
users’ public keys!

23

Verifiable History (Strawman)

Blockchain

Checkpoint: Epoch 1

Hash(Latest Digest)

Server Storage

Signed by Signed by Signed by
Server Server Server

End of Epoch 1

Signed by
Server

e History for each object is e L
recorded as a hash chain of Alice’s Client
digests

e History is committed to

blockchain at the end of each Signed Signed by
EDOCh by Server Server

Doctor’s Client

Signed by I Signed by

Server Server

Blockchain

Veritiable Anonymous History Checkpoint; Epoch

Hash(Latest Digest)

Server Storage End of Epoch 1

Signed by Signed by Signed by Signed by Signed by Signed by ' Signed by Signed by
PSK Server | RSK Server | WSK Server | RSK Server
» History for each object is Alice’s Client Doctor’s Client

recorded as a hash chain of
digests

e History is committed to © m— = m—C : -
blockchain at the end of each Signed Signed by Signed by I Signed by
EDOCh S by Server @ Server Server B Server

Additional Challenge: Concurrent Operations

Server Storage

Chmod

Hash(Object)
[first operation]

Q
Signed by Signed by

a PSK Server

* Suppose Alice and Doctor Alice’s
read the object concurrently WL Read
* Both see the same latest Hash(Previous)

digest JASigned by

’s Client

4 Read
Hash(Previous)
Q

Signed by
RSK

RSK

26

Additional Challenge: Concurrent Operations

o~
/
Chmod
p
_ Read
Hash(Object) T~ Hash(Previous)
[first operation] n
5 Signed by
Signed by Signed by o RSK
PSK Server

G

Server Storage

e
Read
= Hash(Previous)

Q
Signed by
RSK

e Suppose Alice and Doctor
read the object concurrently

e Both see the same latest
digest

Alice’s Client

’s Client

27

Additional Challenge: Concurrent Operations

1 Server|Storage
4 4
Chmod Read
Hash(Object) \ Hash(Object)
[first operation] Hash(Previous Digest)

Q Q
Signed by Signed by Signed by

PSK Server RSK

G G

Signed by

Server

Wrong
Hash(Previous)!

e Suppose Alice and Doctor

read the object concurrently

e Both see the same latest
digest

Alice’s Client

Doctor’s Client

28

Insight: Client Sighs over only Some Fields

Read

Q
Signed by
RSK

Signed by

Hash(Object)
Hash(Previous Digest)

Server

becomes>

Read
Nonce .—

Hash(Object) |
Hash(Previous)

Server

29

Concurrent Reads in Ghostor

Server Storage

Chmod

Hash(Object)
[first operation]

Q

PSK

e Suppose Alice and Doctor Alice’s Client ’s Client

read the object concurrently Read] Read I
[Nonce [Nonce

e Both see the same latest
. RSK RSK
digest a a

Concurrent Reads in Ghostor

4 Chmod Read Read
Nonce T———) Nonce T
Hash(Object) Hash(Obiject) m Hash(Object) m
[first operation] Hash(Previous) - Hash(Previous) >

Q

PSK

Server Storage

e Suppose Alice and Doctor
read the object concurrently

e Both see the same latest
digest

Alice’s Client

Read

Doctor’s Client

Read

31

This Technique Does Not Work for Writes

Server Storage

s
Chmod
Hash(Object)
[first operation]
PSK
a
e Suppose Alice writes the file Alice’s Client ’s Client

Hash(Object) WSK

; N
Write
Nonce P E—
G

32

This Technigue Does Not Work for Writes

Chmod
Nonce

Hash(Object)
[first operation]

Q))

PSK

Write

Hash(Object)

Hash(Previous) -

Server Storage

Write
Nonce
Hash(Object)

Hash(Previous) >

Time-Stretch Attack

Write
Nonce
Hash(Object)

Hash(Previous) ’

e Suppose Alice writes the file

Alice’s Client

Doctor’s Client

Write Write

33

Concurrent Writes in Ghostor

Server Storage

4 :
Chmod Read Commit
Hash(Obiject)
Hash(Object) | Hash(Object) m Hash(Prepare) |
[first operation] Hash(Previous) - Hash(Previous) - Hash(Previous) >
PSK
a

* Suppose Alice writes the file Alice’s Client Doctor’s Client

Prepare

W

Commit

W

Read

34

Ghostor Stack

Concurrent Preventing Hiding Netyvork Ghostor-MH
Operations Resource Abuse Information

Verifiable Anonymous History

Anonymously Distributed Shared Capabilities

35

Ghostor Stack

Described in our paper

Concurrent Preventing Hiding Netyvork Ghostor-MH
Operations Resource Abuse Information

Verifiable Anonymous History

Anonymously Distributed Shared Capabilities

36

Implementation

* Implemented Ghostor prototype in Go
* Built on top of Ceph RADOS

* Linearizable, distributed, fault-tolerant object store

* Benchmarked on Amazon EC2 in multi-node, multi-SSD setup

Server-Side Latency to PUT a 1 MiB Object

50

S
o

w
o

Small Overhead

Latency (ms)

-)
o o o
-m

3

Q

@)

<

®

-

>

®

Q
-Q

Insecure End-to-End Anonymity Fork Verifiable Ghostor
Encryption Consistency Linearizability

38

Server-Side Latency to PUT a 1 MiB Object

50

Latency (ms)
N w S
o o o

[ERY
o

Insecure

End-to-End
Encryption

Anonymity

Fork Verifiable
Consistency Linearizability

Ghostor

™~ 25 ms

39

Total Latency

* To hide network information, Ghostor clients use the Tor anonymity
network to contact the server

* With Tor, overall latency is several seconds

Conclusion

Ghostor is a cryptographic data sharing system based on decentralized trust

It achieves:
* Anonymity: server cannot tell which user makes an access
 Verifiable Linearizability: users detect if they don’t receive the latest data

Ghostor’s techniques could significantly boost the security guarantees of:

N) C Ovlrrru

WhatsApp Keybase tresorit crypHO

Conclusion

Ghostor is a cryptographic data sharing system based on decentralized trust.

It achieves:
* Anonymity: server cannot tell which user makes an access
 Verifiable Linearizability: users detect if they don’t receive the latest data

Thank you!

S8 A This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program
"N F 7 under Grant No. DGE-1752814. Any opinions, findings, and conclusions or recommendations expressed in this material

F’ﬁ are those of the authors and do not necessarily reflect the views of the National Science Foundation.
2 2B

