
Ghostor: Toward a Secure Data-Sharing 
System from Decentralized Trust

*Yuncong Hu, *Sam Kumar, and Raluca Ada Popa

University of California, Berkeley

*Co-primary authors

1



Motivating Example: Medical Record System

Alice

Oncologist

2

Storage Server



Threat Model

Alice

Oncologist
Storage Server

3



Existing Systems rely on Centralized Trust

Alice

Oncologist

Central Point 
of Trust!

Adversary can:
• See files and who 

accesses them
• Serve old or 

modified data

4

Storage Server



End-to-End Encryption [CFS, SiRiUS, Plutus, etc.]

Storage Server

File A:

File B:

ACL:

ACL:

Content:

Content:

Bob, Oncologist

Alice, Oncologist

Alice

Oncologist

5



Privacy Leakage in E2EE Data Sharing

Storage Server

File B:

ACL:

Content:

Alice, Oncologist

Alice

Oncologist

Alice has access to File B
Oncologist has access to File B
Alice accesses File B
Oncologist accesses File B

6



Ghostor: Cryptographic Data-Sharing System

• Anonymity

• Verifiable Linearizability

7



Ghostor: Cryptographic Data-Sharing System

• Anonymity

• Verifiable Linearizability

8



Privacy Leakage in E2EE Data Sharing

Storage Server

File B:

ACL:

Content:

Alice, Oncologist

Alice

Oncologist

Alice has access to File B
Oncologist has access to File B
Alice accesses File B
Oncologist accesses File B

9



E2EE Data Sharing vs. Ghostor’s Anonymity

Storage Server

Alice

Oncologist

Alice has access to File B
Oncologist has access to File B
Alice accesses File B
Oncologist accesses File B

E2EE Data Sharing

10



E2EE Data Sharing vs. Ghostor’s Anonymity

Storage Server

Alice

Oncologist

Alice has access to File B
Oncologist has access to File B
Alice accesses File B
Oncologist accesses File B

E2EE Data Sharing

Storage Server

Alice

Oncologist

UNKNOWN has access to File B
UNKNOWN accesses File B
UNKNOWN accesses File B

What files did Alice access?
Is she part of the system?

Ghostor’s Anonymity

11



E2EE Data Sharing vs. Ghostor’s Anonymity

Storage Server

Alice

Oncologist

Alice has access to File B
Oncologist has access to File B
Alice accesses File B
Oncologist accesses File B

E2EE Data Sharing

Storage Server

UNKNOWN has access to File B
UNKNOWN accesses File B
UNKNOWN accesses File B

What files did Alice access?
Is she part of the system?

Ghostor’s Anonymity

12



E2EE Data Sharing vs. Ghostor’s Anonymity

Storage Server

Alice

Oncologist

Alice has access to File B
Oncologist has access to File B
Alice accesses File B
Oncologist accesses File B

E2EE Data Sharing

Storage Server

UNKNOWN has access to File B
UNKNOWN accesses File B
UNKNOWN accesses File B

What files did Alice access?
Is she part of the system?

Ghostor’s Anonymity

13

Ghostor-MH is a theoretical 
scheme that also hides 

access patterns (see paper)



Ghostor: Cryptographic Data-Sharing System

• Anonymity

• Verifiable Linearizability

14



Verifiable Linearizability

Storage Server

File A:

File B:

ACL:

ACL:

Content:

Content:

Bob, Oncologist

Alice, Oncologist

No allergy

Alice

Oncologist

Allergic to X

15



Verifiable Linearizability

Storage Server

File A:

File B:

ACL:

ACL:

Content:

Content:

Bob, Oncologist

Alice, Oncologist
No allergy

Alice

Oncologist Allergic to X
User can detect if he 
receives anything other 
than the latest write

16



Comparison to Existing Work

17

Rely on Central Trust
• Split server into two 

parts and assume one is 
honest, or

• Assume semi-honest 
adversary

Ghostor

Anonymity and
Verifiable Linearizability

Verena [KFPC16]: Verifiable 
Linearizability

AnonymousCloud [KH12]: 
Anonymity

Based on Decentralized Trust
• Avoids placing trust in a 

few central machines



Bootstrapping Decentralized Trust

Storage System 
based on 

Decentralized Trust

Blockchain

Transparency Logs Peer-to-Peer Bootstrap

18



Strawman: Use a Blockchain

User’s Machine

Ghostor
Client

Blockchain

read, write, 
create files

Expensive!

19



Ghostor’s System Architecture

Ghostor
Storage Server

User’s Machine

Ghostor
Client

Blockchain

checkpoint

checkpoint

20

One checkpoint for the entire 
system once per epoch

summary of 
operations

checkpoint



• History for each object is 
recorded as a hash chain of 
digests

• History is committed to 
blockchain at the end of each 
epoch

Server Storage

Blockchain

Alice’s Client Doctor’s Client

Chmod

Hash(Object)
[first operation]

Signed by 
Alice

Signed by 
Server

Read

Hash(Object)
Hash(Previous Digest)

Signed by 
Doctor

Signed by 
Server

Write

Hash(Object)
Hash(Previous Digest)

Signed by 
Alice

Signed by 
Server

Read

Hash(Object)
Hash(Previous Digest)

Signed by 
Doctor

Signed by 
Server

End of Epoch 1

Checkpoint: Epoch 1
Hash(Latest Digest)

Chmod

Signed by 
Alice

Signed 
by Server

Write

Signed by 
Alice

Signed by 
Server

Read

Signed by 
Doctor

Signed by 
Server

Read

Signed by 
Doctor

Signed by 
Server

Verifiable History (Strawman)

21



How to make Verifiable History Anonymous?

• Signing keys are like capabilities

• Idea: have different users share capabilities for each object

22



Shared Capabilities

23

Header:

Content:

Object Data

PKAlice PKDoctor

WSK

Key-Private Encryption

WSK Padding

PSK

Stored by the 
object’s owner

RSK

RSK

RSK

Might reveal 
users’ public keys!

Permission Signing Key

Reader Signing Key

Writer Signing Key

Anonymously Distributed 
Shared Capabilities



• History for each object is 
recorded as a hash chain of 
digests

• History is committed to 
blockchain at the end of each 
epoch

Server Storage

Blockchain

Alice’s Client Doctor’s Client

Chmod

Hash(Object)
[first operation]

Signed by 
Alice

Signed by 
Server

Read

Hash(Object)
Hash(Previous Digest)

Signed by 
Doctor

Signed by 
Server

Write

Hash(Object)
Hash(Previous Digest)

Signed by 
Alice

Signed by 
Server

Read

Hash(Object)
Hash(Previous Digest)

Signed by 
Doctor

Signed by 
Server

End of Epoch 1

Checkpoint: Epoch 1
Hash(Latest Digest)

Chmod

Signed by 
Alice

Signed 
by Server

Write

Signed by 
Alice

Signed by 
Server

Read

Signed by 
Doctor

Signed by 
Server

Read

Signed by 
Doctor

Signed by 
Server

Verifiable History (Strawman)

24



• History for each object is 
recorded as a hash chain of 
digests

• History is committed to 
blockchain at the end of each 
epoch

Server Storage

Blockchain

Alice’s Client Doctor’s Client

Chmod

Hash(Object)
[first operation]

Signed by
PSK

Signed by 
Server

Read

Hash(Object)
Hash(Previous Digest)

Signed by
RSK

Signed by 
Server

Write

Hash(Object)
Hash(Previous Digest)

Signed by
WSK

Signed by 
Server

Read

Hash(Object)
Hash(Previous Digest)

Signed by
RSK

Signed by 
Server

End of Epoch 1

Checkpoint: Epoch 1
Hash(Latest Digest)

Chmod

Signed by 
PSK

Signed 
by Server

Write

Signed by 
WSK

Signed by 
Server

Read

Signed by 
RSK

Signed by 
Server

Read

Signed by 
RSK

Signed by 
Server

Verifiable Anonymous History

25



Additional Challenge: Concurrent Operations

26

Server Storage

Alice’s Client Doctor’s Client

Chmod

Hash(Object)
[first operation]

Signed by 
PSK

Signed by 
Server

Read
Hash(Previous)

Signed by 
RSK

Read
Hash(Previous)

Signed by 
RSK

• Suppose Alice and Doctor 
read the object concurrently

• Both see the same latest 
digest



Additional Challenge: Concurrent Operations

27

Server Storage

Alice’s Client Doctor’s Client

Chmod

Hash(Object)
[first operation]

Signed by 
PSK

Signed by 
Server

• Suppose Alice and Doctor 
read the object concurrently

• Both see the same latest 
digest

Read
Hash(Previous)

Signed by 
RSK

Read
Hash(Previous)

Signed by 
RSK



Additional Challenge: Concurrent Operations

28

Server Storage

Alice’s Client Doctor’s Client

Chmod

Hash(Object)
[first operation]

Signed by 
PSK

Signed by 
Server

• Suppose Alice and Doctor 
read the object concurrently

• Both see the same latest 
digest

Read

Hash(Object)
Hash(Previous Digest)

Signed by 
RSK

Signed by 
Server

Read
Hash(Previous)

Signed by 
RSK

Wrong 
Hash(Previous)!



Insight: Client Signs over only Some Fields

29

Hash(Object)
Hash(Previous)

Server

Read
Nonce

RSK

Read

Hash(Object)
Hash(Previous Digest)

Signed by 
RSK

Signed by 
Server

becomes



Concurrent Reads in Ghostor

30

Server Storage

Alice’s Client Doctor’s Client

Chmod

Hash(Object)
[first operation]

Server

• Suppose Alice and Doctor 
read the object concurrently

• Both see the same latest 
digest

Read
Nonce

RSK

Read
Nonce

RSK

PSK



Concurrent Reads in Ghostor

31

Server Storage

Alice’s Client Doctor’s Client• Suppose Alice and Doctor 
read the object concurrently

• Both see the same latest 
digest

Hash(Object)
Hash(Previous)

Server

Hash(Object)
Hash(Previous)

Server

Read
Nonce

RSK

Read
Nonce

Read

RSKServer

Read

RSKServer

RSK

Chmod

Hash(Object)
[first operation]

ServerPSK



This Technique Does Not Work for Writes

32

Server Storage

Alice’s Client Doctor’s Client• Suppose Alice writes the file

Write
Nonce
Hash(Object) WSK

Chmod

Hash(Object)
[first operation]

ServerPSK



This Technique Does Not Work for Writes

33

Server Storage

Alice’s Client Doctor’s Client• Suppose Alice writes the file

Hash(Previous)

Server

Hash(Previous)

Server

Write
Nonce
Hash(Object) WSK

Write
Nonce
Hash(Object)

Write

WSKServer

Hash(Previous)

Server

Write
Nonce
Hash(Object) WSKWSK

Write
Nonce
Hash(Object) WSK

Time-Stretch Attack

Chmod

Hash(Object)
[first operation]

ServerPSK

Write

WSKServer



Concurrent Writes in Ghostor

34

Server Storage

Alice’s Client Doctor’s Client• Suppose Alice writes the file

Hash(Previous)

Server

Hash(Previous)

Server

Prepare
Hash(Object)

WSK

Commit
Hash(Object)
Hash(Prepare)

Prepare

WSKServer

WSK

Commit

WSKServer

Hash(Object)
Hash(Previous)

Server

Read
Nonce

RSK

Read

RSKServer

Chmod

Hash(Object)
[first operation]

ServerPSK



Ghostor Stack

Anonymously Distributed Shared Capabilities

Verifiable Anonymous History

Concurrent 
Operations

Preventing 
Resource Abuse

Hiding Network 
Information

Ghostor-MH

35



Ghostor Stack

Anonymously Distributed Shared Capabilities

Verifiable Anonymous History

Concurrent 
Operations

Preventing 
Resource Abuse

Hiding Network 
Information

Ghostor-MH

36

Described in our paper



Implementation

• Implemented Ghostor prototype in Go

• Built on top of Ceph RADOS
• Linearizable, distributed, fault-tolerant object store

• Benchmarked on Amazon EC2 in multi-node, multi-SSD setup

37



Server-Side Latency to PUT a 1 MiB Object

0

10

20

30

40

50

Insecure End-to-End
Encryption

Anonymity Fork
Consistency

Verifiable
Linearizability

Ghostor

La
te

n
cy

 (
m

s)

38

Small Overhead

Small Overhead



Server-Side Latency to PUT a 1 MiB Object

0

10

20

30

40

50

Insecure End-to-End
Encryption

Anonymity Fork
Consistency

Verifiable
Linearizability

Ghostor

La
te

n
cy

 (
m

s)

39

25 ms



Total Latency

• To hide network information, Ghostor clients use the Tor anonymity 
network to contact the server

• With Tor, overall latency is several seconds

40



Conclusion

Ghostor is a cryptographic data sharing system based on decentralized trust

It achieves:

• Anonymity: server cannot tell which user makes an access

• Verifiable Linearizability: users detect if they don’t receive the latest data

Ghostor’s techniques could significantly boost the security guarantees of:

41
Keybase



Conclusion

Ghostor is a cryptographic data sharing system based on decentralized trust.

It achieves:

• Anonymity: server cannot tell which user makes an access

• Verifiable Linearizability: users detect if they don’t receive the latest data

This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program 
under Grant No. DGE-1752814. Any opinions, findings, and conclusions or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Thank you!

42


