Re-architecting Congestion Management in Lossless Ethernet

Wenxue Cheng, Kun Qian, Wanchun Jiang(CSU), Tong Zhang, Fengyuan Ren

NNS group @ Department of Computer Science and Technology, Tsinghua University

Priority-based Flow Control (PFC)

Priority-based Flow Control (PFC)

Congestion Spreading & Head-of-Line Blocking

Congestion tree from P2 to H0 and H1.

F0 is a victim flow.

Congestion Control Schemes

Congestion control schemes are needed e.g. QCN^[IEEE 802.1], DCQCN^[RoCEv2] and TIMELY^[SIGCOMM 2015].

(1) Congestion spreading still exists.

Evolution-based rate decrease is slower than PFC's effect.

(1) Congestion spreading still exists.(2) F0 is also victimized by CC.

PFC infects congestion detection of congestion control schemes.

- (1) Congestion spreading still exists.
- (2) F0 is also victimized by CC.
- (3) Rate recovery is inadaptable to dynamic network conditions.

Liner rate increase method and tuning parameters.

 $\sum R ? C$

Explicit Congestion Notification (ECN)

- Only based on queue length
- Fail to distinguish quasi-congestion and real-congestion

- Don't change ECN for packets that has been paused
- Counter PN: number of packets that has been paused

- Don't change ECN for packets that has been paused
- Counter PN: number of packets that has been paused

- Don't change ECN for packets that has been paused
- Counter PN: number of packets that has been paused

- Don't change ECN for packets that has been paused
- Counter PN: number of packets that has been paused

- Don't change ECN for packets that has been paused
- Counter PN: number of packets that has been paused

- Don't change ECN for packets that has been paused
- Counter PN: number of packets that has been paused

Non-Paused ECN (NP-ECN)

- Don't change ECN for packets that has been paused
- Counter PN: number of packets that has been paused

Continuously marked with ECN

Non-Paused ECN (NP-ECN)

- Don't change ECN for packets that has been paused
- Counter PN: number of packets that has been paused

Continuously marked with ECN

Real-Congestion (P2)

Rate Adjustment

How to adjust the rates of

- Congested Flows --> target?
- Victim Flows --> no decrease?
- Non-congested Flows

How to adjust the rates of

- Congested Flows → reduce to receiving rate immediately
- Victim Flows & Uncongested Flows → rate increase

F0 = 20Gbps, Reduce F1's rate

eceiving

How to adjust the rates of

- Congested Flows
 → reduce to receiving rate immediately
- Victim Flows & Uncongested Flows → rate increase

Receiver-Driven Rate Decrease

- sendRate $\leftarrow \min\{sendRate, (1 w_{min})recRate\}$
- No PFC & no serious throughput loss & 1 control loop

Rate Adjustment

Automatic gentle-to-aggressive

Photonic Congestion Notification (PCN)

PCN's Benefit

Benefit

Evaluation Setup

Testbed Setup

- Dumbbell topology
- Implementation on DPDK (Intel 82599)
- 4 hosts (PowerEdge R530) connected to single ToR
- 10Gbps

NS-3 Simulation Setup

- Clos topology
- 512 hosts / 32 ToRs / 16 Leafs / 8 Spines
- 10Gbps / 40Gbps

Evaluations

Evaluation: Large-Scale Simulations

Simulation Setup

Flow size	% of number		% of traffic	
	W1	W2	W1	W2
0KB-10KB (S)	80.14	70.79	3.08	0.22
10KB-100KB (M)	10.32	16.59	5.89	1.56
100KB-1MB (L)	9.12	3.52	83.8	1.53
1MB- (XL)	0.41	9.1	7.04	96.7

W1: Web-server workload W2: Hadoop cluster workload

512 hosts

Evaluation: Large-Scale Simulations

Web-server Workload

Evaluation: Large-Scale Simulations

Hadoop Workload

Re-architecting congestion management

Proposing Photonic Congestion Notification (PCN)

- NP-ECN \rightarrow victim flows/congested flows
- Receiver-driven rate decrease \rightarrow no PFC in 1 loop
- Automatic rate increase

Evaluations on testbed and ns-3 simulation show, PCN triggers fewer PFC and achieves lower flow completion time.

Thanks !

pyscwx@126.com renfy@tsinghua.edu.cn