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One of the most vexing technical problems that blocks
the p.lla towards an ISPN is llul ol lnpporhn‘ rul-ume

This paper considers the support of real-ti

in an Integrated Services Packet Network (lSPN) We first
review the characteristics of real-time applications, We ob-
serve that, contrary to the popular view that real-time ap-

licati ily require a fixed delay bound, some real-

time ppli are more flexible and can adapt to current
hit

in a
are quite different from standard dnu -pplmlwnl. and re-
quire service that cannot be delivered within the typical data
service architecture. In Section 2 we discuss the nature of
real-time applications at length; here, however, it suffices
to ob.etvt uut one salient characteristic of the real-time

network conditions. We then propose an ISPN -
ture that supports two distinct kinds of real-time service:
guaranteed service, which is the traditional form of real-
time service discussed in most of the literature and involves
pre-computed t delay bounds, and predicted service
which uses the measured performance of the network in com-
puting delay bounds. We then propose a packet scheduli

ti ider is that they require a bound on

the delivery delay of each packet’. While this bound may
be statistical, in the sense that some small fraction of the
packets may fail to arrive by this bound, the bound itself
must be known a priori. The traditional data service archi-
tecture underlying ¢ ks has no facilities for
cheduling ol‘,,lcrvu:enponmrload

that can support both of these real-time services
as well as accommodate datagram traffic. We also di

and thus is unable to meet this real-time requirement.

two other aspects of an overall ISPN architecture: the ser-
vice interface and the admission control criteria.

1 Introduction

The current generation of telephone networks and the cur-
rent generation of computer networks were each designed to
carry specific and very different kinds of traffic: analog voice
and digital data. However, with the dmtumg of telephony
in ISDN and the increasing use of mult in

applncauons, this distinction is rapidly disappearing. Metg-
ing these sorts of services into a single network, which we re-
fer to here as an Integrated Services Packet Network (ISPN),
would yield a single telecommunications infrastructure offer-

Therefore, in order to handle real-time traffic, an en-
h d archi is needed for an ISPN. We identify four
to this archi . The first piece of the
architecture is the nature of the comlmlmenu made by the
network when it promises to deliver a certain quality of ser-
vice. We identify two sorts of commitments, guaranteed and
predicted. Predicted service is a major aspect of our paper.
While the idea of predicted service has been considered be-
fore, the issues that surround it have not, to our knowledge,
been carefully explomd
The second piece of the architecture is the service inter-
face, i.e., the set of p passed b the source
and the network. The service interface must include both
the characterization of the quality of service the network will
deliver, fulﬁlhng the need of applications to know when their

ing a multitude of advantages, including vast jes of
scale, ubiquity of access, and imp d statistical multipl
ing. There is a broad consensus, at least in the computer
networking community, that an ISPN is both a worthy and
an achievable goal. However, there are many political, ad-
ministrative, and technical hurdles to ov before this
vision can become a reality.
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kets will arrive, and the duu:!enuhon of the source’s
tnﬁcthzmbyallo'mgthe k to knowledgeably al-
locate resources. In this paper we attempt to identify the
critical aspects of the service u:terfu:c, and oﬂ'er a particular
interface as an _' We add in p g the need for
f of these characterizati
The third piece of the architecture is the packet schedul-
ing“ jor of k switches needed to meet these ser-
it We di both the actual scheduling
llgonlhms to be used in the switches, as well as the schedul-
ing information that must be carried in packet headers. This

2Since the term bound is tossed around with great abandon in the

rest of the paper, we need to identify several different meanings to

the term. An @ priors bound on delay is a statement that none of

the future delays will exceed that amount. A post facto bound is the

maximal value of a set of observed delays. Statistical bounds allow

for a certain percentage of violations of the bound; absolute bounds
none
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Minimize tail packet delays
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pFabric: Minimal Near-Optimal Datacenter Transport
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Molwaled by this observation, recent research has proposed new
designs that, broadly speaking, use rate con-

ABSTRACT
In this paper we present pFabric, a minimalistic d trans-
port design that provides near th ically optimal flow 1

tion times even at the 99th percentile for short flows, while sull
minimizing average flow completion time for long flows. More-
over, pFabric delivers this performance with a very simple design
that is based on a key ptual insight: d transport should
decouple flow scheduling from rate control. For flow scheduling,
packets carry a single priority number set independently by each
flow; switches have very small buffers and implement a very sim-
ple priority-based scheduling/dropping mechanism. Rate control is
also correspondingly simpler; flows start at line rate and throttle
back only under high and persistent packet loss. We provide the-
oretical intuition and show via extensive simulations that the com-
bination of these two simple mechanisms is sufficient to provide
near-optimal performance.

Categories and Subject Descriptors: C.2.1 [Computer-Communication
Networks]: N rk Archil and Design

General Terms: Design, Performance

Keywords: Datacenter network, Packet transport, Flow scheduling

1. INTRODUCTION

D workloads impose unique and

on the transport fabric. Interactive soft real- time workloads such
as the ones seen in search, social networking, and retail generate a
large ber of small req and resp across the datacen-
ter that are stitched together to perform a user-requested compu-
tation (e.g., delivering search results). These applications demand
low latency for each of the short request/response flows, since user-
perceived performance is dictated by how quickly responses to all
(or a large fraction of) the req are coll d and deli d back
to the user. However in currently deployed TCP-based fabrics,
the latency for these short flows is poor — flow completion times
(FCT) can be as high as tens of milliseconds while in theory these
flows could complete in 10-20 mi ds. The reason is that
these flows often get queued up behind bursts of packets from large
flows of co-existing workloads (such as backup, replication, data
mining, etc) which significantly increases their completion times.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
rcdmnbu!c to lists, rcquucs prior specific permission and/or a fee. Request
from p org.
SIGCOMM 13, Augusl 12-16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

trol to reduce FCT for short flows. One line of work [3, 4] im-
pmvm FCT by keepmg queues near empty through a variety of

(ad. gestion control, ECN-based feedback,
pacing, etc) so lhm latency-sensitive flows see small buffers and
consequently small latencies. These implicit techniques generally
improve FCT for short flows but they can never precisely determine
the right flow rates to optimally schedule flows. A second line of
work [21, 14] explicitly computes and assigns rates from the net-
work to each flow in order to schedule the flows based on their sizes
or deadlines. This approach can potentially pm\'ld: very good per-
formance, but it is rather plex and chall g P in
practice b accurately puting rates ires detailed flow
state at switches and also coordination among swuchcs to identify
the bottleneck for each flow and avoid under-utilization (§2).

Our goal in this paper is to design the simplest possible datacen-
ter transport scheme that provides near-optimal flow completion
times, even at the 99" percentile for latency-sensitive short flows.
To this end, we present pFabric,' a minimalistic datacenter fabric
whose entire design consists of the following:

o End-hosts put a single number in the header of every packet
that encodes its priority (e.g., the flow’s remaining size, dead-
line). The priority is set independently by each flow and no
coordination is required across flows or hosts to compute it.
Switches are simple; they have very small buffers (e.g., 36KB
per port in our evaluation) and decide which packets to ac-
cept into the buffer and which ones to schedule strictly ac-
cording to the packet’s priority number. When a new packet
arrives and the buffer is full, if the incoming packet has lower
priority than all buffered packets, it is dropped. Else, the low-
est priority packet in the buffer is dropped and replaced with
the incoming packet. When transmitting, the switch sends
the packet with the highest priority. Thus each switch oper-
ates independently in a greedy and local fashion.

Rate control is minimal; all flows start at line-rate and throttle
their sending rate only if they see high and persistent loss.
Thus rate control is lazy and easy to implement.

pFabric thus requires no flow state or complex rate calculations at
the switches, no large switch buffers, no explicit network feedback,
and no sophisticated congestion control hani at the end-
host. pFabric is a clean-slate design: it requires modifications both
at the switches and the end-hosts. We also present a preliminary de-
sign for deploymg pFabnc using existing switches, but a full design

I

for in ploy is beyond the scope of this paper.

! pFabric was first introduced in an earlier paper [5] which sketched
a preliminary design and initial simulation results.
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Minimize flow completion times
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Approximating Fair Queueing on Reconfigurable Switches

Naveen Kr. Sharma* Ming Liu*

Abstract

Congestion control today is predominantly achieved via
end-to-end mechanisms with little support from the net-
work. As a result, end-hosts must cooperate to achieve
optimal throughput and fairness, leading to inefficiencies
and poor performance isolation. While router mecha-
nisms such as Fair Queuing guarantee fair bandwidth al-
location to all participants and have proven to be optimal
in some respects, they require complex flow classifica-
tion, buffer allocation, and scheduling on a per-packet
basis. These factors make them expensive to implement
in high-speed switches.

In this paper, we use emerging reconfigurable switches
to develop an approximate form of Fair Queueing that
operates at line-rate. We leverage configurable per-
packet processing and the ability to maintain mutable
state inside switches to achieve fair bandwidth alloca-
tion across all traversing flows. Further, present our
design for a new dequeuing scheduler, called Rotating
Strict Priority scheduler that lets us transmit packets from
multiple queues in approximate sorted order. Our hard-
ware emulation and software simulations on a large leaf-
spine topology show that our scheme closely approxi-
mates ideal Fair Queucing, improving the average flow
completion times for short flows by 2-4x and 99" tail
latency by 4-8x relative to TCP and DCTCP.

1 Introduction

Most current congestion control schemes rely on end-
to-end mechanisms with little support from the net-
work (e.g., ECN, RED). While this approach simplifies
switches and lets them operate at very high speeds, it
requires end-hosts to cooperate to achieve fair network
sharing, thereby leading to inefficiencies and poor per-
formance isolation. On the other hand, if the switches
were capable of maintaining per-flow state, extracting
rich telemetry from the network, and performing con-
figurable per-packet processing, one can realize intelli-
gent congestion control mechanisms that take advantage
of dynamic network state directly inside the network and
improve network performance.

One such mechanism is Fair Queueing, which has
been studied extensively and shown to be optimal in sev-
eral aspects. It provides the illusion that every flow (or
participant) has its own queue and receives a fair share

*University of Washington
! Cavium Inc.

Kishore Atreya' Arvind Krishnamurthy*

of the bandwidth under all circumstances, regardless of
other network traffic. Having the network enforce fair
bandwidth allocation offers several benefits. It simplifies
congestion control at the end-hosts, removing the need
to perform slow-start or complex congestion avoidance
strategies. Further, flows can ramp up quickly without
affecting other network traffic. It also provides strong
isolation among competing flows, protects well-behaved
flows from ill-behaving traffic, and enables bounded de-
lay guarantees [34].

A fair bandwidth allocation scheme is potentially well
suited to today’s datacenter environment, where mul-
tiple applications with diverse network demands often
co-exist. Some applications require low latency, while
others need sustained throughput. Datacenter networks
must also contend with challenging traffic patterns - such
as large incasts or fan-in, micro-bursts, and synchronized
flows, — which can all be managed effectively using a fair
queueing mechanism. Fair queueing mechanisms can
also provide bandwidth guarantees for multiple tenants
of a shared cloud infrastructure [35].

Over the years, several algorithms for enforcing fair
bandwidth allocation have been proposed [25, 27, 28,
33], but rarely deployed in practice, primarily due to their
inherent complexities. These algorithms maintain state
and perform operations on a per-flow basis, making them
challenging to implement at data rates of 3-6 Tbps in
hardware. However, recent advances in switching hard-
ware allow flexible per-packet processing and the abil-
ity to maintain limited mutable state at switches without
sacrificing performance [12, 6]. In this paper, we explore
whether an efficient fair queueing implementation can be
realized using these emerging reconfigurable switches.

We present Approximate Fair Queueing (AFQ), a fair
bandwidth allocation mechanism that approximates the
various components of an ideal fair queueing scheme
using features available in emerging programmable
switches, such as the ability to maintain and mutate
switch state on a per-packet basis, perform limited com-
putation for each packet, and dynamically determine
which egress queue to use for a given packet. We de-
scribe a variant of the packet-pair flow control proto-
col [24], designed to work with AFQ, that achieves close
to optimal performance while maintaining short queues.
We further prototype an AFQ implementation on a Cav-
ium networking processor and study its feasibility on
upcoming reconfigurable switches. Using a real hard-
ware testbed and large-scale simulations, we demon-

Enforce max-min fairness
[ToN 93, NSDI 18]
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Universal Packet Scheduling

Radhika Mittal' ~ Rachit Agarwal’
TUC Berkeley

Abstract

In this paper we address a seemingly simple question:
Is there a universal packet scheduling algorithm? More
precisely, we analyze (both theoretically and empirically)
whether there is a single packet scheduling algorithm that,
at a network-wide level, can perfectly match the results of
any given scheduling algorithm. We find that in general
the answer is “no”. However, we show theoretically that
the classical Least Slack Time First (LSTF) scheduling al-
gorithm comes closest to being universal and demonstrate
empirically that LSTF can closely replay a wide range of
scheduling algorithms in realistic network settings. We
then evaluate whether LSTF can be used in practice to
meet various network-wide objectives by looking at pop-
ular performance metrics (such as mean FCT, tail packet
delays, and faimess); we find that LSTF performs com-
parable to the state-of-the-art for each of them. We also
discuss how LSTF can be used in conjunction with ac-
tive queue management schemes (such as CoDel) without
changing the core of the network.

1 Introduction

There is a large and active research literature on novel
packet scheduling algorithms, from simple schemes such
as priority scheduling [31], to more complicated mech-
anisms to achieve fairness [16, 29, 32], to schemes that
help reduce tail latency [15] or flow completion time [7],
and this short list barely scratches the surface of past and
current work. In this paper we do not add to this impres-
sive collection of algorithms, but instead ask if there is a
single universal packet scheduling algorithm that could
obviate the need for new ones. In this context, we consider
a packet scheduling algorithm to be both how packets are
served inside the network (based on their time of arrival
and their packet header) and how packet header fields
are initialized at the edge of the network; this definition
includes all the classical scheduling algorithms (FIFO,
LIFO, priority, round-robin) as well as algorithms that
incorporate dynamic packet state [15,35,36].

Sylvia Ratnasamy' Scott Shenker'*
H1cs1

We can define a universal packet scheduling algorithm
(hereafter UPS) in two ways, depending on our viewpoint
on the problem. From a theoretical perspective, we call a
packet scheduling algorithm universal if it can replay any
schedule (the set of times at which packets arrive to and
exit from the network) produced by any other scheduling
algorithm. This is not of practical interest, since such
schedules are not typically known in advance, but it offers
a theoretically rigorous definition of universality that (as
we shall see) helps illuminate its fundamental limits (i.e.,
which scheduling algorithms have the flexibility to serve
as a UPS, and why).

From a more practical perspective, we say a packet
scheduling algorithm is universal if it can achieve dif-
ferent desired performance objectives (such as fairness,
reducing tail latency, minimizing flow completion times).
In particular, we require that the UPS should match the
performance of the best known scheduling algorithm for
a given performance objective. !

The notion of universality for packet scheduling might
seem esoteric, but we think it helps clarify some basic
questions. If there exists no UPS then we should expect
to design new scheduling algorithms as performance ob-
jectives evolve. Moreover, this would make a strong ar-
gument for switches being equipped with programmable
packet schedulers so that such algorithms could be more
easily deployed (as argued in [33]; in fact, it was the elo-
quent argument in this paper that caused us to initially ask
the question about universality).

However, if there is indeed a UPS, then it changes the
lens through which we view the design and evaluation
of packet scheduling algorithms: e.g., rather than asking
whether a new scheduling algorithm meets a performance
objective, we should ask whether it is easier/cheaper to

! For this definition of universality, we allow the header initialization
to depend on the objective being optimized. That is, while the basic
scheduling operations must remain constant, the header initialization can
depend on whether you are secking fairness or minimal flow completion
time.

Is there a universal packet scheduler?

[NSDI "16]

“You can’t have everything you want,

but you can have anything you want”

Generality

Universal packet scheduler

Flexibility

Customized algorithms
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Abstract

In this paper we address a seemingly simple question:
Is there a universal packet scheduling algorithm? More
precisely, we analyze (both theoretically and empirically)
whether there is a single packet scheduling algorithm that,
at a network-wide level, can perfectly match the results of
any given scheduling algorithm. We find that in general
the answer is “no”. However, we show theoretically that
the classical Least Slack Time First (LSTF) scheduling al-
gorithm comes closest to being universal and demonstrate
empirically that LSTF can closely replay a wide range of
scheduling algorithms in realistic network settings. We
then evaluate whether LSTF can be used in practice to
meet various network-wide objectives by looking at pop-
ular performance metrics (such as mean FCT, tail packet
delays, and faimess); we find that LSTF performs com-
parable to the state-of-the-art for each of them. We also
discuss how LSTF can be used in conjunction with ac-
tive queue management schemes (such as CoDel) without
changing the core of the network.

1 Introduction

There is a large and active research literature on novel
packet scheduling algorithms, from simple schemes such
as priority scheduling [31], to more complicated mech-
anisms to achieve fairness [16, 29, 32], to schemes that
help reduce tail latency [15] or flow completion time [7],
and this short list barely scratches the surface of past and
current work. In this paper we do not add to this impres-
sive collection of algorithms, but instead ask if there is a
single universal packet scheduling algorithm that could
obviate the need for new ones. In this context, we consider
a packet scheduling algorithm to be both how packets are
served inside the network (based on their time of arrival
and their packet header) and how packet header fields
are initialized at the edge of the network; this definition
includes all the classical scheduling algorithms (FIFO,
LIFO, priority, round-robin) as well as algorithms that
incorporate dynamic packet state [15,35,36].

Sylvia Ratnasamy' Scott Shenker'*
H1cs1

We can define a universal packet scheduling algorithm
(hereafter UPS) in two ways, depending on our viewpoint
on the problem. From a theoretical perspective, we call a
packet scheduling algorithm universal if it can replay any
schedule (the set of times at which packets arrive to and
exit from the network) produced by any other scheduling
algorithm. This is not of practical interest, since such
schedules are not typically known in advance, but it offers
a theoretically rigorous definition of universality that (as
we shall see) helps illuminate its fundamental limits (i.e.,
which scheduling algorithms have the flexibility to serve
as a UPS, and why).

From a more practical perspective, we say a packet
scheduling algorithm is universal if it can achieve dif-
ferent desired performance objectives (such as fairness,
reducing tail latency, minimizing flow completion times).
In particular, we require that the UPS should match the
performance of the best known scheduling algorithm for
a given performance objective. !

The notion of universality for packet scheduling might
seem esoteric, but we think it helps clarify some basic
questions. If there exists no UPS then we should expect
to design new scheduling algorithms as performance ob-
jectives evolve. Moreover, this would make a strong ar-
gument for switches being equipped with programmable
packet schedulers so that such algorithms could be more
easily deployed (as argued in [33]; in fact, it was the elo-
quent argument in this paper that caused us to initially ask
the question about universality).

However, if there is indeed a UPS, then it changes the
lens through which we view the design and evaluation
of packet scheduling algorithms: e.g., rather than asking
whether a new scheduling algorithm meets a performance
objective, we should ask whether it is easier/cheaper to

! For this definition of universality, we allow the header initialization
to depend on the objective being optimized. That is, while the basic
scheduling operations must remain constant, the header initialization can
depend on whether you are secking fairness or minimal flow completion
time.

Is there a universal packet scheduler?

[NSDI "16]

“You can’t have everything you want,

but you can have anything you want”

Generality

Programmable
scheduling
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ABSTRACT

Switches today provide a small set of scheduling algorithms.
While we can tweak scheduling parameters, we cannot mod-
ify algorithmic logic, or add a completely new algorithm,
after the switch has been designed. This paper presents a
design for a programmable packet scheduler, which allows
scheduling algorithms—potentially algorithms that are un-
known today-—to be programmed into a switch without re-
quiring hardware redesign.

Our design builds on the observation that scheduling algo-
rithms make two decisions: in what order to schedule pack-
ets and when to schedule them. Further, in many schedul-
ing algorithms these decisions can be made when packets
are enqueued. We leverage this observation to build a pro-
grammable scheduler using a single abstraction: the push-in
first-out queue (PIFO), a priority queue that maintains the
scheduling order and time for such algorithms.

We show that a programmable scheduler using PIFOs lets
us program a wide variety of scheduling algorithms. We
present a detailed hardware design for this scheduler for a
64-port 10 Gbit/s shared-memory switch with <49 chip area
overhead on a 16-nm standard-cell library. Our design lets
us program many sophisticated algorithms, such as a 5-level
hierarchical scheduler with programmable scheduling algo-
rithms at each level.

1. INTRODUCTION

Today's line-rate switches provide a menu of schedul-
ing algorithms: typically, a combination of Deficit Round
Robin [34], strict priority scheduling, and traffic shaping.
A network operator can configure parameters in these algo-
rithms. However, an operator cannot change the core algo-
rithmic logic in an existing scheduling algorithm, or program
a new one, without building new switch hardware.

By contrast, with a programmable packet scheduler, net-
work operators would be able to deploy custom schedul-
ing algorithms to better meet application requirements, e.g.,
minimizing flow completion times [9] using Shortest Re-
maining Processing Time [33], flexible bandwidth allocation
across flows or tenants [31, 26] using Weighted Fair Queue-
ing [17], or minimizing tail packet delays [16] using Least
Slack Time First [28]. With a programmable packet sched-

uler, switch designers would implement scheduling algo-
rithms as programs atop a programmable substrate. Moving
scheduling algorithms into software makes it much easier to
build and verify algorithms in comparison to implementing
the same algorithms as rigid hardware IP.

This paper presents a design for programmable packet
scheduling in line-rate switches. Our design is motivated by
the observation that all scheduling algorithms make two key
decisions: first, in what order should packets be scheduled,
and second, at what time should each packet be scheduled.
Furthermore, in many scheduling algorithms, these two deci-
sions can be made when a packet is enqueued. This observa-
tion was first made in a recent position paper [36]. The same
paper also proposed the push-in first-out queue (PIFO) [15]
abstraction for maintaining the scheduling order or schedul-
ing time for packets, when these can be determined on en-
queue. A PIFO is a priority queue data structure that allows
elements to be pushed into an arbitrary location based on
an element’s rank, but always dequeues elements from the
head.

Building on the PIFO abstraction, this paper presents the
detailed design, implementation, and analysis of feasibil-
ity of a programmable packet scheduler. To program a
PIFO, we develop the notion of a scheduling transaction—
a small program to compute an element’s rank in a PIFO.
We present a rich programming model built using PIFOs
and scheduling transactions (§2) and show how to pro-
gram a diverse set of scheduling algorithms in the model
(§3): Weighted Fair Queueing [17], Token Bucket Filter-
ing [7], Hierarchical Packet Fair Queueing [10], Class-
Based Queueing [19, 20], Least-Slack Time-First [28], Stop-
and-Go Queueing [22], the Rate-Controlled Service Disci-
plines [40], and fine-grained priority scheduling (e.g., Short-
est Job First, Shortest Remaining Processing Time, Least At-
tained Service, and Earliest Deadline First).

Until now, all line-rate implementations of these schedul-
ing algorithms—if they exist at all—have been hard-wired
into switch hardware. We also describe the limits of the
PIFO abstraction (§3.5) by presenting examples of schedul-
ing algorithms that can’t be programmed using a PIFO.

We present a detailed hardware design for a pro-
grammable scheduler using PIFOs (§4). We have imple-

PIFO abstraction for
programmable scheduling

[SIGCOMM "16]

Implementing PIFO queues in hardware
is difficult

Deployability Requires new ASIC implementation,

which might take years

Scalability Supports ~1k flows and ~10 Gbps

Assumes monotonic increase of
ranks within flows

Flexibility



Can we approximate PIFO queues...

at line rate,

at scale, and

on existing devices?
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Only drains packets from the head
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The PIFO queue
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PIFO queues can be used as an abstraction
to make scheduling programmable

The PIFO queue Allows packets to be pushed into arbitrary

ocations

Only drains packets from the head
Packet
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PIFO Queue
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PIFO queues can be used as an abstraction
to make scheduling programmable

Programmable
scheduler

Rank computation (programmable)

PIFO queue (fixed logic)

f = flow(p)

p.rank = f.size

PIFO Queue

Rank Computation
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PIFO queues can be used as an abstraction
to make scheduling programmable

Programmable
scheduler

Rank computation (programmable)

PIFO queue (fixed logic)

f = flow(p)

B S4(4|3|2|1—

PIFO Queue

p.rank = f.size

Rank Computation
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SP-PIFO approximates PIFO behaviors using Strict-Priority queues
and a dynamic mapping strategy

Programmable Rank computation (programmable)

scheduler Adaptation strategy + strict-priority queues (fixed logic)

_ 1 .

f = flow(p) a =

p.rank = f.size ] -
Rank Computation Adaptation Strategy —_—ee]

Strict-Priority Queues



SP-PIFO approximates PIFO behaviors using Strict-Priority queues
and a dynamic mapping strategy

ldeal case Perfect PIFO if number of queues >= number of ranks
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SP-PIFO approximates PIFO behaviors using Strict-Priority queues
and a dynamic mapping strategy

ldeal case Perfect PIFO if number of queues >= number of ranks

1
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4
5

Strict-Priority Queues



SP-PIFO approximates PIFO behaviors using Strict-Priority queues
and a dynamic mapping strategy

In practice Number of queues < number of ranks
Problem Output sequence can have scheduling errors

Strict-Priority Queues
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SP-PIFO approximates PIFO behaviors using Strict-Priority queues
and a dynamic mapping strategy

In practice Number of queues < number of ranks

Problem Output sequence can have scheduling errors

Low-ranked packets drained after high-ranked packets

_:- 4 2 3 1 suboptimal output

Strict-Priority Queues
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SP-PIFO approximates PIFO behaviors using Strict-Priority queues
and a dynamic mapping strategy

In practice Number of queues < number of ranks
Problem Output sequence can have scheduling errors
Opportunity Designh mapping strategies that

minimize scheduling errors
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SP-PIFO defines mapping through ‘queue bounds'

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

Strict-Priority Queues
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SP-PIFO defines mapping through ‘queue bounds'

Is rank >= queue bound ?
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Mapping Queue bounds scanned bottom-up
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SP-PIFO defines mapping through ‘queue bounds'

Mapping

Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

.. 1

A

2

___

Strategy A

A

2

3

1

suboptimal output
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SP-PIFO defines mapping through ‘queue bounds'

Mapping

Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

S A

Strategy A

Strategy B

412131

suboptimal output
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SP-PIFO defines mapping through ‘queue bounds'

Mapping

Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

R
Strategy A

» 1 - i_

3 _: .

Strategy B

412131

suboptimal output
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How can we design a mapping strategy
that minimizes scheduling errors?



SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

Adaptation design

Implementation

Evaluation



SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

] Adaptation design

2 Implementation
How can it be deployed

3 Evaluation
How well does it perform
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Problem formulation

Objective

Find optimal queue bounds g*
That minimize the expected loss U for all ranks

qg* = argmin E [ U(g,r) ]

€0 r~R

Unpifoness (U) quantifies the scheduling errors
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Initialization Zero traffic knowledge

Queue bounds set to zero

Strict-Priority Queues
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Initialization Zero traffic knowledge

Queue bounds set to zero

0k 3] 4]

Strict-Priority Queues
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Initialization

o

Zero traffic knowledge

Queue bounds set to zero

eep O

—_

A

Strict-Priority Queues

3

A

"

scheduling error
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Initialization

Zero traffic knowledge

Queue bounds set to zero

Rank >= queue bound ?

Lok 4|

Strict-Priority Queues
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Push-up < 4
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Push-up

After enqueue, queue bound set to

the rank of the packet enqueued

Rank >= queue bound ?

L4l 4|

Strict-Priority Queues
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Push-up After enqueue, queue bound set to

the rank of the packet enqueued

Push-up < 3
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

{3 3
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Push-up

After enqueue, queue bound set to

the rank of the packet enqueued

41 41—

Strict-Priority Queues
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Error cost = (Queue bound - rank) = 1

7

Strict-Priority Queues




SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

For all gueue bounds:

decrease error cost (1)

Push-down < 3 213
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

For all gueue bounds:

decrease error cost (1)

2 2|3

Push-down < 3




SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Push-down

2_

3_

Strict-Priority Queues

5]

After potential error detected,

all gueue bounds decreased the error cost
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SP-PIFO adapts the mapping of packet ranks
to strict-priority queues

Objective Find optimal queue bounds g*
That minimize the expected loss U for all ranks

Result Packet-level adaptation of g

Push-up Push-down
Low-rank packets / High-rank packets




SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

Adaptation design

2 Implementation

Evaluation



SP-PIFO has been fully implemented on
existing programmable hardware

Registers

Queue Bound n Queue Bound n-1 Queue Bound 1

Metadata Priority Queues

Queue ID

i

Queue Bound 1 - Rank

A
A
A

>
O

| | |
Parser Ingress pipeline Traffic Manager



SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

] Adaptation design
How does it work

2 Implementation
How can it be deployed

3 Evaluation
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Fvaluation

Question How well does SP-PIFO approximate
well-known scheduling objectives under

realistic traffic workloads?

Scheduling Minimizing Flow Completion Time

objectives |
pFabric* (8 queues)

Ranks are set to the remaining flow size

Max-min fairness

Start-Time Fair Queuing (32 queues)

Ranks based on a fluid mode

* without starvation prevention
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Methodology

Packet-level
simulator

Topology

Realistic
workloads

We integrated SP-PIFO in Netbench

We use a leaf-spine topology with 144 servers,

links of 1Gbps and 4Gbps

We generate traffic following pFabric

web-search workload
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SP-PIFO closely approximates pFabric,
minimizing FCTs for both small and big flows

99th percentile FCT (ms) Average FCT (ms)

50 7 o o o D SR 500 —

. T
| ooeleP—— 300

20 —/ ------ */ -------- o o 200 -
101 o o o — o 100 ~

0O T T T T | | | 0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load Load

Small flows <100KB Big flows >1MB



SP-PIFO closely approximates state-of-the-art
fair-queuing algorithms

Average FCT (ms) Average FCT (ms)

107_ """" """""""" """""""" """""""" """""""" """""""" A A

105 . AFQ

e e

o R

>2M <IM 80K 50K 30K 20K 10K

Load Flow size

Small flows <100KB All flows @ Load 0.7
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Check our website!
sp-pifo.ethz.ch

SP-PIFO characterization,
comparison with gradient

Hardware evaluation on
Barefoot Tofino

Limitations and
future improvements

0oe < > {J

i@ sp-pifo.ethz.ch ] [ﬁ

SP-PIFO About FAQ Paper Presentations Code People

SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

SP-PIFO is the first programmable packet scheduler which
closely approximates the behavior of PIFO queues using strict-priority
queues—at line rate, at scale, and on existing devices.

The key insight behind SP-PIFO is to dynamically adapt the
mapping between packet ranks and available strict-priority queues,
according to the observed network conditions, to minimize the
scheduling errors with respect to an ideal PIFO queue.

All the code is available
All our experiments are reproducible

59



SP-PIFO: Making scheduling programmable, today!

SP-PIFO approximates the behavior of PIFO queues

at line rate, at scale and on existing devices

It adapts the mapping between packet ranks and

strict-priority queues to minimize the scheduling errors

It reacts per-packet to traffic variations,

without traffic knowledge required
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SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues
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