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Localization for Autonomous Vehicles
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3D Maps




3D Maps

https://360.here.com/2015/07/20/here-introduces-hd-maps-for-highly-automated-vehicle-testing/
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3D Map Collection Today

Mapping companies
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3D Map Collection Today

Mapping companies Fleet of data collection vehicles
00
o ) e
w Bai b &EE
WAYMO

Maps for Life



3D Map Collection Today

Fleet of data collection vehicles

Environmental changes
render maps stale
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Importance of Map Updates

—— Updated map —— Outdated map
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Cost of Map Collection

DEEPMAP

Mapping cost:
$5000 / km



The Question

What is a scalable way to build an up-to
date 3D map with near real-time updates?

)
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Our Approach

Depth sensors and wireless radios in vehicles

Crowdsource map collection & updates
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Our Approach: Crowdsourcing

Stereo camera
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Our Approach: Crowdsourcing

Stereo camera Upload map data
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Our Approach: Crowdsourcing

Download map data

Stereo camera
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Challenge: Size of 3D Maps
SLAM



Challenge: Size of 3D Maps

SLAM
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Challenge: Size of 3D Maps
SLAM
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Feature map
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30 kph - 100 Mbps
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Challenge: Environmental Transients
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Challenge: Environmental Transients

Map from
rush hour
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Challenge: Environmental Transients

Map from
rush hour

22



Challenge: Environmental Transients

Map from
rush hour

localization
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Map Updates

Challenge

ed maps

Vehicle collect
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CarMap Contributions
Challenges

Contributions
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CarMap Contributions
Challenges

Contributions

Large feature maps

Lean map representation
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CarMap Contributions
Challenges

Contributions

Environmental transients

Dynamic object filter
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CarMap Contributions

Challenges

Contributions

Map updates

Robust stitching, efficient diff

Details in the paper
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CarMap Contributions
Challenges

Contributions

Large feature maps

Lean map representation
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Background: Image Features

Image feature

3D position
(%, y, 2)

Descriptor
123,78, ..., 71]
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Background

: 3D Frames

Incoming 3D frames
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Background: Keyframe

Incoming 3D frames

Keyframes
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Background: Keyframe Features

Incoming 3D frames

Keyframes

Keyframe features
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Background: Map Features

Incoming 3D frames

Keyframes

Stable across
frames

Keyframe features

Map features
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Background: Feature-based SLAM

Input frame
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Background: Feature-based SLAM

Input frame
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Background: Image Feature

Matching
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Background: Image Feature Matching

AR Fcatures from the
map

& Features seen by
the vehicle
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Background: Image Feature Matching

Requirements:
| , ® Accuracy
W=7 * Speed

Data structures:
e Feature index
* Map feature index
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Background: Feature-based SLAM

Input frame
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Background: Feature-based SLAM

Input frame

Feature map
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Map Elements: Keyframe-Features

Keyframe-
features
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Map Elements: Map-Features

Map-
features

Keyframe-
features
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Map Elements: Feature-Index

Map- Keyframe-
features features
Feature-

index
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Map Elements: Map-Feature Index

Map- Keyframe-
features features
Map-feature Feature-
index index
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Map Elements: Minimal Representation?

Map- Keyframe-
features features
Map-feature Feature-
index index
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Feature Map Bandwidth Requirements

Feature-Map Sustained Bandwidth
Scheme Requirement (Mbps)

Full Feature-based

SLAM Map 100

Keyframe-Features 27
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CarMap's Lean Map Representation

Map-features
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CarMap’s Map Element Relationships

Map-tfeatures are
only 4% of all
keyframe features

Map- Keyframe-
features features
Map-feature Feature-
index index

49



Feature Map Bandwidth Requirements

Feature-Map Sustained Bandwidth
Scheme Requirement (Mbps)
Full Feature-based
SLAM Map 100
Keyframe-Features 27

Map-Features 1
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CarMap Contributions
Challenges
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Contributions
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CarMap Contributions

Challenges Contributions
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Background: Feature Matching Data Structures

Feature matching requirements:

e Accuracy
e Speed

Data structures:

e Feature index
e Map-feature index
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Background: Feature Matching Key Idea

Feature-
index




Background

3D Frame

: Feature Matching Key Idea

Feature-
index
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Background: Feature Matching Key Idea

3D Frame |

Image feature
similarity

Feature-
index

|dentical
keyframes
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Background

Feature map

: Histogram-based Matching
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Background: Histogram-based Matching

1, 3, ..., 212]
46,13, ..., 2]
1,4, ..., 222]

Feature descriptors

Feature map



Background: Histogram-based Matching
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Background: Hlstogram -based I\/Iatc:hmg
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Background: Hlstogram -based I\/Iatc:hmg
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Background: Histogram-based Matching
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3D Frame  Feature descriptors
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In SLAM, Histograms use Keyframe Features

Keyframe features
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CarMap Removes all Keyframe Features

Map features
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Implications of Lean Map & Dynamic Filter

~30x fewer features in map

Feature matching with sparse features
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Implications of Lean Map & Dynamic Filter

~30x fewer features in map

Feature matching with sparse features

No keyframe matches

False positives
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Problem with Coarse-Grained Feature Matching

Problem: Image feature similarity not robust with sparse features
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CarMap: Position Hints for Feature Matching

Problem: Image feature similarity not robust with sparse features

Solution: Use position hints
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CarMap: Insight for Position Hints

Problem: Image feature similarity not robust with sparse features
Solution: Use position hints

Insight: Vehicles will have GPS & inertial sensors
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CarMap: Robust Coarse-Grained Feature Matching

3D Frame

Feature map

70



CarMap: Robust Coarse-Grained Feature Matching

Spatially close
keyframes

GPS Feature map
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CarMap: Robust Coarse-Grained Feature Matching

Spatially close
keyframes
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CarMap: Robust Coarse-Grained Feature Matching

Word histogram
matching

Spatially close
keyframes



CarMap: Robust Coarse-Grained Feature Matching

Word histogram : ; Spatial i
matching ' neighbors
_________ e KT

Spatially close
keyframes



CarMap: Robust Coarse-Grained Feature Matching

3D Frame |

Spatially close
keyframes

_J Word histogram : ; Spatial i
i matching ' neighbors
_________ e KT

i Transform 3D frame and perform
' fine-grained feature matching

______________________________________



Problem with Fine-Grained Feature Matching

Problem: Image feature similarity and single keyframe
matching are not robust
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CarMap: Robust Fine-Grained Feature Matching

Problem: Image feature similarity and single keyframe
matching are not robust

Solution: Spatial positions and multiple keyframe matching
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CarMap: Insight for Robust Fine-Grained Matching

Problem: Image feature similarity and single keyframe
matching are not robust

Solution: Spatial position, and multiple keyframe matching

Insight: Feature 3D positions are robust & on-board GPS

Details in the paper
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CarMap Contributions
Challenges

Contributions

Environmental transients

Dynamic object filter
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Challenge: Environmental Dynamics

Map from
rush hour

localization
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Semantic Segmentation

Vehicle Vegetation

Road surface
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CarMap Map Features Without Dynamic Filter

Map Features
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Semantic Segmentation for Feature Selection

Static object features

Environmental transient features
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CarMap Map Features After Dynamic Filtering

Features in CarMap
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Challenges in Semantic Segmentation

Low accuracy
62.4% iloU

Low throughput
Less than 1 FPS
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Challenges in Semantic Segmentation

Low accuracy
62.4% iloU

Low throughput
Less than 1 FPS

e Robust labeling
e Resource awareness

Details in the paper

86



CarMap: Evaluation

Near real-time map updates

E2E localization accuracy

Lean map representation

Dynamic object filter

Map stitching
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CarMap: Evaluation

Near real-time map updates

E2E localization accuracy
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Evaluation: Near Real-Time Updates Setup
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Evaluation: Near Real-

0.6 seconds on average
for a map update

Map size (MB)

ime Updates Results

I Vehicle to cloud time ~ EEE Cloud to vehicle time
I Integration time - = Average E2E latency

Vehicle driving time (minutes)
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Evaluation: End-to-End Localization Setup

Build map

Dynamic scene

Static scene
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Evaluation: End-to-End Localization Results

Mapping .
Scheme Dynamic
error (%)
ORB-SLAM?Z2
QuickSketch

CarMap

Suburbia

Static error

(%)

Map size
(MB)

92



Evaluation: End-to-End Localization Results

Mapping
Scheme
ORB-SLAMZ2
QuickSketch
CarMap

Dynamic
error (%)

45.4
44.7
0.86

~45x better

Suburbia

Static error

(%)

Map size
(MB)
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Evaluation: End-to-End Localization Results

Suburbia
Mapping
Scheme Dynamic | Static error Map size
error (%) (%) (MB)

ORB-SLAMZ2 45.4 o
QuickSketch 44.7 o0

CarMap 0.86 1.22

Robust to

~45x better

scene changes
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Evaluation: End-to-End Localization Results

Mapping
Scheme
ORB-SLAMZ2
QuickSketch
CarMap

Dynamic
error (%)

45.4
44.7
0.86

~45x better

Suburbia

Static error

(%)

(oo}

1.22

Robust to
scene changes

Map size
(MB)

105.6
108.4
3.94

~26x smaller
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Evaluation: Multi-Lane Localization Setup

Build map

Lane One

Lane Four
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Evaluation: Multi-Lane Localization Results

Static Freeway

“g:ﬁ;:‘f Localization error (%)
2nd Lane 3rd Lane 4th Lane
ORB-SLAM?2 3.79
QuickSketch 4.29
CarMap 2.26
Better

localization




Evaluation: Multi-Lane Localization Results

Static Freeway

I\S/Iappmg Localization error (%)
cheme
2nd Lane 3rd Lane 4th Lane
ORB-SLAM?2 3.79 No localization
QuickSketch 4.29 No localization
CarMap 2.26 3.52
Better Robust

localization localization




Evaluation: Multi-Lane Localization Results

Static Freeway

I\élappmg Localization error (%)
cheme
2nd Lane 3rd Lane 4th Lane
ORB-SLAM?2 3.79 No localization | No localization
QuickSketch 4.29 No localization | No localization
CarMap 2.26 3.52 4.85
Better Robust Robust

localization localization localization
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Conclusion

Map updates in less than one second
Maps usable in ditferent trattic conditions

Maps usable across multiple lanes
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Thank you
‘ﬁgt‘ "

The vehicle drives through the street with an on-board camera, laptop and phone

u https://youtu.be/SIGA0GgSypk GitHub https://github.com/USC-NSL/CarMap 4,4



