
Model-agnostic and efficient exploration of
numerical state space of real-world TCP

congestion control implementations

Wei Sun (UNL)
Lisong Xu (UNL)

Sebastian Elbuam (Virginia)
Di Zhao (UNL)

22. run script 3. check result

1. write
testing
script

create a network with a single link
• speed = 1Kbps to 1Gbps
• loss = 0.00001% to 10%

• Impractical to check each of 1012 possible combinations
• Propose automated state space exploration in order to

efficiently solve this type of TCP testing problems

test CUBIC in the created network, and
keep track of CUBIC state variables
• cwnd : congestion window size
• target : expected cwnd after one RTT

• check whether target > 2*cwnd
• If so, too aggressive (more

aggressive than slow start)

Example: check whether CUBIC is sometimes too aggressive

32. run script 3. check result

1. write
testing
script

Concepts of parameter space P and state space S

• check whether target > 2*cwnd
• If so, too aggressive (more

aggressive than slow start)

network environment parameter space
P = { (speed, loss) } for this example

congestion control state space
S = { (cwnd, target) } for this exampletest CUBIC in the created network, and

keep track of CUBIC state variables
• cwnd : congestion window size
• target : expected cwnd after one RTT

create a network with a single link
• speed = 1Kbps to 1Gbps
• loss = 0.00001% to 10%

Parameter space P and state space S

Each network environment in P leads CUBIC to visit a sequence of states in S.
(the sequence of states are for illustration purpose only)

4

init state

P S

s1

s2

p1

p2

a network
environment

p →

speed

loss

cwnd

target

Parameter space P and state space S

As we choose more network environments in P, more states in S will be visited.

5

speed

loss

cwnd

target
P S

s1

s2

p1

p2

• In order to solve this type of testing problems, we can just find all possible
regions of S that can be visited by a congestion control algorithm.

• Red region (target>2*cwnd) is the region where CUBIC is too aggressive. If the
red region can be visited by CUBIC, then CUBIC is sometimes too aggressive.6

speed

loss

cwnd

target
P S

s1

s2

p1

p2

Example: check whether CUBIC is sometimes too aggressive

Automated state space exploration

What is automated state space exploration?
• Given

• a parameter space P for a testing script
• a state space S for a congestion control algorithm,

• how to automatically choose network environments in P in order to explore
as many different regions of S as possible?

Why it is useful?
• It can be used to test whether a congestion control algorithm has wrong or

inappropriate behaviors by just checking whether the corresponding regions
of S can be visited.

7

Our method: Automated Congestion control Testing (ACT)

• Goal: Explore as many different regions of S as possible, instead of
concentrating on some regions

• Feedback-guided random testing
• Scalable to large P: ACT randomly selects network environments in P
• Efficiently explore S: The random selection is guided by the feedback
• Model-agnostic: Feedback is obtained from previous state coverage information,

and does not require abstract models of P and S

• ACT steps
• ① Random testing
• ② Parameter estimation
• ③ Parameter concatenation

8

ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation

• Uniformly randomly select network environments in P
to have an initial coverage of S

9

P S

s1

s2

p1

p2

• Uniform selection in P ≠ uniform coverage of S, due to non-linear mapping
• Use parameter estimation to explore the unvisited gaps and corners.

10

P S

s1

s2

p1

p2 P S

s1

s2

p1

p2

ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation

• Use random interpolation to visit the gap between two visited regions

11

P S

s1

s2

p1

p2

pbp*pa

sa s* sb

ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation

• Use random extrapolation to visit an unvisited corner or side of S
• The directions are estimated using the results of step ①.

12

P S

s1

s2

p1

p2

directions to
decrease s 2 sc

p* s*

pc

ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation

• Some regions are still not visited, if state variables are correlated
(e.g., cwnd and ssthresh)

13

P S

s1

s2

p1

p2

regions visited by
steps ①and ②

ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation

• If s1 and s2 are positively correlated, estimated by extrapolation will
lead the algorithm to visit that has smaller s2 and smaller s1.

14

P S

s1

directions to
decrease s 2

s2

p1

p2

init state

sd

p* s*

pd

s+

p*
s+

ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation

• Parameter concatenation uses both and . That is, we change the
network environment in the middle of an experiment.

• The algorithm will follow a different path to state , more likely to visit
unvisited regions. 15

p*pd

ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation

P S

s1

s2

p1

p2

init state

sd

p* s*

pd

s+

s+

Experiment setup

• Real-world TCP congestion control in Linux 3.10:
• CUBIC, AIMD, HTCP, HSTCP, VENO

• Parameter space P
• a testing script with a single-link network
• (loss, speed, propagation delay, random queueing delay, application rate)

• State space S
• (cwnd, ssthresh, rtt, rttvar, ca_state, …)
• plus protocol-specific state variables

• Two types of experiments
• state space coverage
• bug detection

16

State space coverage experiments

Measuring state space coverage by four different testing methods
• ACT
• RAN: Undirected random testing
• MAN: Manually choose popular network environments used in

previous studies
• SYM: Symbolic execution based testing where packet delays are

represented as symbolic variables

17

Measuring state space coverage

• Divide S into equal-sized regions of size k.
• Measure the percentage of regions

covered by each testing method
• Example: 3 out of 4 regions are visited,

thus coverage is 75% with region size k.

18

S

s1

s2

k

k

State space coverage of CUBIC

19
• SYM is not scalable to ten of thousands of packets.

Two-dimensional projection of S: Coverage by ACT

20ssthresh

cwnd

Two-dimensional projection of S: Coverage by ACT

21ssthresh

cwnd

① random testing

Two-dimensional projection of S: Coverage by ACT

22ssthresh

cwnd

① random testing
② parameter estimation

Two-dimensional projection of S: Coverage by ACT

23ssthresh

cwnd

① random testing
② parameter estimation
③ parameter concatenation

Bug detection experiments

• Check three types of behaviors
1. Generic behavior
2. Window increase behavior
3. Window decrease behavior

24

Generic behavior: Check whether cwnd > 107 packets

• Bug: Sometimes AIMD, HTCP, HSTCP, VENO set cwnd to 4,294,967,294 packets
• Reported to Linux kernel developers, were told that just fixed 25

Window increase behavior: Check whether target > 2*cwnd

• One bug: In the application rate limited periods, CUBIC does not increase
cwnd, but it still increases target. 26

Window decrease behavior: Check whether cwnd reduces after fast recovery

• One bug: Sometimes AIMD and HTCP increase cwnd after undoed recovery
• Reported it to Linux kernel developers, and now it has been fixed 27

dup
ACKs

fast recovery

undo
recovery

Conclusion

• Proposed ACT as a simple, efficient, and effective tool for
automated TCP congestion control correctness testing.

• Found several Linux TCP bugs using ACT.

28

	Model-agnostic and efficient exploration of numerical state space of real-world TCP congestion control implementations
	Example: check whether CUBIC is sometimes too aggressive
	Concepts of parameter space P and state space S
	Parameter space P and state space S
	Parameter space P and state space S
	Example: check whether CUBIC is sometimes too aggressive
	Automated state space exploration
	Our method: Automated Congestion control Testing (ACT)
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	Experiment setup
	State space coverage experiments
	Measuring state space coverage
	State space coverage of CUBIC
	Two-dimensional projection of S: Coverage by ACT
	Two-dimensional projection of S: Coverage by ACT
	Two-dimensional projection of S: Coverage by ACT
	Two-dimensional projection of S: Coverage by ACT
	Bug detection experiments
	Generic behavior: Check whether cwnd > 107 packets
	Window increase behavior: Check whether target > 2*cwnd
	Window decrease behavior: Check whether cwnd reduces after fast recovery
	Conclusion

