Model-agnostic and efficient exploration of
\ numerical state space of real-world TCP
congestion control implementations

® 'I UNIVERSITY OF NEBRASKA-LINCOLN

Example: check whether CUBIC is sometimes too aggressive

/

create a network with a single link
e speed = 1Kbps to 1Gbps
= 0.00001% to 10%

* |oss

T~/

1. write C

O

testing
script

 Impractical to check each of 10*? possible combinations
 Propose automated state space exploration in order to
Y, efficiently solve this type of TCP testing problems

/test CUBIC in the created network, and
keep track of CUBIC state variables
e cwnd : congestion window size

)

Wted cwnd after one RTT

2. run script

check whether target > 2*cwnd
If so, too aggressive (more
aggressive than slow start)

3. check result

Concepts of parameter space P and state space S

/

e speed = 1Kbps to 1Gbps
= 0.00001% to 10%

* |oss

. .)
create a network with a single link {network environment parameter space}

P ={(speed, loss) } for this example

)

T~/

1. write C

O

testing
script

/test CUBIC in the created network, and
keep track of CUBIC state variables
e cwnd : congestion window size

™\ | congestion control state space
S ={(cwnd, target) } for this example

)

wmd cwnd after one RTT

2. run script

check whether target > 2*cwnd
If so, too aggressive (more
aggressive than slow start)

3. check result

Parameter space P and state space S

A

P2 P
%
loss o
o
a hetwork
environment
speed p1’

Each network environment in P leads CUBIC to visit a sequence of states in S.

S2 S
target
init state cwnd sq
>

(the sequence of states are for illustration purpose only)

y N.

Parameter space P and state space S

A

P2 P
loss ®
®
®
@
®
@
speed p1’

As we choose more network environments in P, more states in S will be visited.

S2 S
target
®
° o®
® O ®
® .: ®
® ® *.°
o% °®
® o®
o 0of
cwnd s
>

y N.

Example: check whether CUBIC is sometimes too aggressive

A
P2 P S

loss ®

¢ ®
o®
o
® o

o

o
o o

speed p1’ cwnd Sl>

* In order to solve this type of testing problems, we can just find all possible
regions of S that can be visited by a congestion control algorithm.

e Red region (target>2*cwnd) is the region where CUBIC is too aggressive. If the
red region can be visited by CUBIC, then CUBIC is sometimes too aggressive.

Automated state space exploration

What is automated state space exploration?

* Given
e a parameter space P for a testing script
e a state space S for a congestion control algorithm,

* how to automatically choose network environments in P in order to explore
as many different regions of S as possible?

Why it is useful?

* |t can be used to test whether a congestion control algorithm has wrong or
inappropriate behaviors by just checking whether the corresponding regions
of S can be visited.

y N.

Our method: Automated Congestion control Testing (ACT)

e Goal: Explore as many different regions of S as possible, instead of
concentrating on some regions

* Feedback-guided random testing

e Scalable to large P: ACT randomly selects network environments in P
e Efficiently exploreS: The random selection is guided by the feedback
* Model-agnostic: Feedback is obtained from previous state coverage informatio

and does not require abstract models of P and S

* ACT steps
. @ Random testing
. @ Parameter estimation
. @ Parameter concatenation

y N.

ACT @ Random testing, @Parameter estimation, @Parameter concatenation

AF’z P A52 S
® ®
®
° °®
o o0
® o® P
® o ©
® _oa ®
" Yk 4
® o o®
® ® o 0o°
pl’ 51’

e Uniformly randomly select network environments in P
to have an initial coverage of S

ACT @ Random testing, @Parameter estimation, @Parameter concatenation

* P| 15 S
o o
®
o
o
o
®
® o
S1>

* Use parameter estimation to explore the unvisited gaps and corners.
10

ACT @ Random testing, @Parameter estimation, @Parameter concatenation

A

P2

P1

e Use random interpolation to visit the gap between two visited regions

>

S1

>

11 N@

ACT @ Random testing, @Parameter estimation, @Parameter concatenation

/'y /'y
P2 P S2 S
directions t o
irecti
ectionsto . _ op
decreases, ', !
\\‘y
— —
® p* .S*
S
b3, .

e Use random extrapolation to visit an unvisited corner or side of S
* The directions are estimated using the results of step @. N
12 o

ACT @ Random testing, @Parameter estimation, @Parameter concatenation

P2 P

regions visited by

steps Wand)

I

 Some regions are still not visited, if state variables are correlated
(e.g., cwnd and ssthresh)
Y N.

ACT @ Random testing, @Parameter estimation, @Parameter concatenation

AI02 P s, ?

L —d

irection

directio S10 . _oP

decreases,, !
\\-y

®o— S
o* ‘/\/\Ao

|O1» init state

* If s, and s, are positively correlated, :* estimated by extrapolation will
lead the algorithm to visit 3* that has smaller s, and smaller s,.

14

ACT @ Random testing, @Parameter estimation, @Parameter concatenation

Apz P ASZ q

p1’ init state

 Parameter concatenation uses both ? and ?* . That is, we change the
network environment in the middle of an experiment.

e The algorithm will follow a different path to state ?, more likely to visit
unvisited regions. 15

Experiment setup

e Real-world TCP congestion control in Linux 3.10:
 CUBIC, AIMD, HTCP, HSTCP, VENO

* Parameter space P
e atesting script with a single-link network
 (loss, speed, propagation delay, random queueing delay, application rate)

e State space S
e (cwnd, ssthresh, rtt, rttvar, ca_state, ...)
 plus protocol-specific state variables

* Two types of experiments
 state space coverage
e bug detection

State space coverage experiments

Measuring state space coverage by four different testing methods
o ACT
* RAN: Undirected random testing

* MAN: Manually choose popular network environments used in
previous studies

 SYM: Symbolic execution based testing where packet delays are
represented as symbolic variables

Measuring state space coverage

A
S2 S
e Divide S into equal-sized regions of size k.
® Y °® * Measure the percentage of regions
* : o® o covered by each testing method
e
o ® o :‘ e Example: 3 out of 4 regions are visited,
o® '0. o thus coverage is 75% with region size k.
o 0o®
! >1
“« —

18

State space coverage of CUBIC

100.000% ¢
3 ;
g 10.000% ¢
3 ;
5 1.000%
~ :
o 0.100%
= ;
> 0.010%
&
0.001%
1 4 16 64 256 1024
Region Size k

e SYM is not scalable to ten of thousands of packets.

Two-dimensional projection of S: Coverage by ACT

1000

900

800

700

cwnd 600
500

400

300

200

100

0
0 100 200 300 400 500 600 700 800 900 1000

ssthresh

Two-dimensional projection of S: Coverage by ACT

TR0 (1) random testing

900 |
800 |-
700 -
cwnd g0l |
500 |- o | ‘
400 |

200 —

100

| | | | | | |
400 500 600 700 800 900 1000

Two-dimensional projection of S: Coverage by ACT

1000 -

(1) random testing
(2) parameter estimation

900 -

800

700 -

cwnd &0 L

500

400 |

300 [{i&d
i

200 {Hi

SR
R .!ivl ! i :' T
i L AR T by (1
i 'WP}F L ol :i:ﬁl 5 ; : | ;i '
100 ﬁy. PR gll 145 1 | f; !
t.f i ; B : ! '
o Than o s B &
U] . fooy |

200 300 400 500 600 700 800 900 1000

ssthresh

Two-dimensional projection of S: Coverage by ACT

(1) random testing
(2) parameter estimation
(3) parameter concatenation

cwnd 600 |

[gt i g i i THinE

l 1ERHRNRE ARl e d e L i :
| o |t HELELE e U il i i} 17§
| (AR I I | il it 4 BB fii

{ &= ; : IR (e Sl b | Hl i bk t 1R
liie e | il B i R IR R
1 i €3y R i E i 1) i) % FRIEEE

", = !_":l il i . i, i1 ; g ;

e Ry i] B[4 i ! I

sl HE i B8 W LR (R 1

' IR N (VB (O {1 | AR 1B i

i 0 {100
A kSRR
|| |] ; i : Il

I i i

: l,ll HEHIEiRE i ! l 1k : |
£l : ! 1# i ”I i i i
L ' I ! !
.i’ {1 |
1 1
i | l j BRI !

|
- I!‘ Il'_ | ! | -|||i!|§!| "i| | | :
T \MJ i AL

0 100 200 300 400 500 600 700 800 900 1000

ssthresh

Bug detection experiments

e Check three types of behaviors
1. Generic behavior
2. Window increase behavior
3. Window decrease behavior

Generic behavior: Check whether cwnd > 107 packets

5)(109 | | |

W

I | | I |
5 10 15 20 25 30
Simulation Time (second)

* Bug: Sometimes AIMD, HTCP, HSTCP, VENO set cwnd to 4,294,967,294 pa
e Reported to Linux kernel developers, were told that just fixed 55

a

X X
ok
& &
NS

|

K=

cwnd (packet)
— N
X X
T
& &
NO N

-

Window increase behavior: Check whether target > 2*cwnd

=N
S & &
S o <&

cwnd (packet)
N W A U
S S
S S

—
—
=

—

300 350 400 450 500

Simulation Time (second)

* One bug: In the application rate limited periods, CUBIC does not increase N

cwnd, but it still increases target. -

Window decrease behavior: Check whether cwnd reduces after fast recovery

S |
g4 |
E 3
] B d n
& Aléis bug _
= 2 undo
g \ recovery
o1 fast recovery N
0 I |
5012 5014 5016 5018

Simulation Time (second)

* One bug: Sometimes AIMD and HTCP increase cwnd after undoed recover
e Reported it to Linux kernel developers, and now it has been fixed 57

N.

Conclusion

* Proposed ACT as a simple, efficient, and effective tool for
automated TCP congestion control correctness testing.

* Found several Linux TCP bugs using ACT.

	Model-agnostic and efficient exploration of numerical state space of real-world TCP congestion control implementations
	Example: check whether CUBIC is sometimes too aggressive
	Concepts of parameter space P and state space S
	Parameter space P and state space S
	Parameter space P and state space S
	Example: check whether CUBIC is sometimes too aggressive
	Automated state space exploration
	Our method: Automated Congestion control Testing (ACT)
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	ACT ① Random testing, ②Parameter estimation, ③Parameter concatenation
	Experiment setup
	State space coverage experiments
	Measuring state space coverage
	State space coverage of CUBIC
	Two-dimensional projection of S: Coverage by ACT
	Two-dimensional projection of S: Coverage by ACT
	Two-dimensional projection of S: Coverage by ACT
	Two-dimensional projection of S: Coverage by ACT
	Bug detection experiments
	Generic behavior: Check whether cwnd > 107 packets
	Window increase behavior: Check whether target > 2*cwnd
	Window decrease behavior: Check whether cwnd reduces after fast recovery
	Conclusion

