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Overview

e Problem: consistent replication adds latency and throughput overheads
= Why? Replication happens after ordering

o Key idea: exploit commutativity to enable fast replication before ordering

e CURP (Consistent Unordered Replication Protocol)
= Clients replicate in 1 round-trip time (RTT) if operations are commutative
= Simple augmentation on existing primary-backup systems

e Results

= RAMCIloud’s performance improvements
e Latency: 14 ys — 7.1 ys (no replication: 6.1 us)
e Throughput: 184 kops/sec — 728 kops/s (~4x)

= Redis cache is now fault-tolerant with small cost (12% latency 1, 18% throughput |)

Slide 2



Consistent Replication Doubles Latencies
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e Unreplicated Systems: 1 RTT for operation
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e Replicated Systems: 2 RTTs for operations

Slide 3



Strawman 1 RTT Replication
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Strong consistency is broken!
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What Makes Consistent Replication Expensive?

e Consistent replication protocols must solve two problems:

= Consistent Ordering: all replicas should appear to execute operations in the same order

= Durability: once completed, an operation must survive crashes.

e Previous protocols combined the two requirements
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Exploiting Commutativity to Defer Ordering

e For performance: cannot do totally ordered replication in 2 RTTs

e Replicate just for durability & exploit commutativity to defer ordering
= Safe to reorder if operations are commutative (e.g. updates on different keys)

e Consistent Unordered Replication Protocol (CURP):
= When concurrent operations commute, replicate without ordering
= When not, fall back to slow totally-ordered replication

Slide 6



Overview of CURP

e Primary returns execution results immediately (before syncing to backups)

e Clients directly replicate to ensure durability
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Normal Operation

e Clients send an RPC request to primary and witnesses in parallel

e If all withesses accepted (saved) request, client can complete operation
safely without sync to backups.
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Normal Operation (continued.)

e |f any witness rejected (not saved) request, client must wait for sync to
backups.
= QOperation completes in 2 RTTs mostly (worst case 3 RTTs)
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Crash Recovery

e First load from a backup and then replay requests in a witness

e Example:
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3 Potential Problems for Strong Consistency

1. Replay from witness may be out of order
=  Witnesses only keep commutative requests

2. Primaries may reveal not-yet-durable data to other clients
= Primaries detect & block reads of unsynced data

3. Requests replayed from witness may have been already recovered
from backup

= Detect and avoid duplicate execution using RIFL

Slide 11



P1l. Replay From Witnhess May Be Out Of Order

e Witness has no way to know operation order determined by primary

e Witness detects non-commutative operations and rejects them

= Then, client needs to issue explicit sync request to primary

e Okay to replay in any order
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P2. Primaries May Reveal Not-yet-durable Data

e Primary doesn’t know if an operation is made durable in withesses
e Subsequent operations (e.g. reads) may externalize the new data

Recorded in witnesses or not?

Client A Q State: x = 3
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e Must wait for sync to backups if a client request depends on any
unsynced updates
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P3. Replay Can Cause Duplicate Executions

e A client request may exist both in backups and witnesses.

e Replaying operations recovered by backups endangers consistency

| Xe—1 | X2 | X3 "

ackups

[~ Detect & ignore duplicate
77 @ requests, e.g. RIFL [SOSP’15]
X2 State: x: 2, y: 7
T | X1 | X2 | X3 M z—1
Witnesses

New primary

Slide 14



Performance Evaluation of CURP

> Implemented in Redis and RAMCloud
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RAMCloud’s Latency after CURP

e Writes are issued sequentially by a client to a master
= 40 B key, 100 B value
= Keys are randomly (uniform dist.) selected from 2 M unique keys
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RAMCloud’s Throughput after CURP

e Thanks to CURP, can batch replication requests without impacting
latency: improves throughput

e Each client issues writes (40B key, 100B value) sequentially

Write Throughput (k write per second

900
800
700
600
500
400
300
200
100

0

— ' """""""""""""""" A """""""""" _
- WX - | —*— Unreplicated |
I A A | —8— CURP (1B, 1W) [
o | —=— GCURP (3B,3W)
- V.S - - | —+— Original (3 B) )
A - - - - ]
| | I | |
0 5 10 15 20 25 30

Client Count (number of clients)

- ﬁ ~6% per replica

4x

Slide 17



See Paper for...

e Design
= Garbage collection

= Reconfiguration handling (data migration, backup crash, witness crash)
= Read operation
= How to extend CURP to quorum-based consensus protocols

e Performance

= Measurement with skewed workloads (many non-commutative ops)
= Resource consumption by witness servers
= CURP’s impact on Redis’ performance
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Related work

e Rely on commutativity for fast replication
= Generalized Paxos (2005): 1.5 RTT
= EPaxos (SOSP’13) : 2 RTTs in LAN, expensive read

e Rely on the network’s in-order deliveries of broadcasts
= Special networking hardware: NOPaxos (OSDI’'16), Speculative Paxos (NSDI'15)
= Presume & rollback: PLATO (SRDS’06), Optimistic Active Replication (ICDCS’01)
= Combine with transaction layer for rollback: TAPIR (SOSP’15), Janus (OSDI’16)

e CURP s

= Faster than other protocols using commutativity
= Doesn'’t require rollback or special networking hardware
= Easy to integrate with existing primary-backup systems
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Conclusion

Total order is not necessary for consistent replication

CURP clients replicate without ordering in parallel with sending requests
to execution servers 2 1 RTT

Exploit commutativity for consistency

Improves both latency (2 RTTs -> 1 RTT) and throughput (4x)

= RAMCIloud’s latency: 14 uys — 7.1 us (no replication: 6.1 us)
= Throughput: 184 kops/sec — 728 kops/s (~4x)
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