Exploiting Commutativity For
Practical Fast Replication

Seo Jin Park and John Ousterhout

2 PLATFORMLAB
Stanford University

Overview

e Problem: consistent replication adds latency and throughput overheads
= Why? Replication happens after ordering

o Key idea: exploit commutativity to enable fast replication before ordering

e CURP (Consistent Unordered Replication Protocol)
= Clients replicate in 1 round-trip time (RTT) if operations are commutative
= Simple augmentation on existing primary-backup systems

e Results

= RAMCIloud’s performance improvements
e Latency: 14 ys — 7.1 ys (no replication: 6.1 us)
e Throughput: 184 kops/sec — 728 kops/s (~4x)

= Redis cache is now fault-tolerant with small cost (12% latency 1, 18% throughput |)

Slide 2

Consistent Replication Doubles Latencies

_ (1) write x = 1 .
client <«) ok X 1

Server

e Unreplicated Systems: 1 RTT for operation

@)writex=1> (2 X: 1
-
client =75k X: 1 "~ ® ok

X: 1

Primary) Backup

e Replicated Systems: 2 RTTs for operations

Slide 3

Strawman 1 RTT Replication

Client

Client

State: x =2
—w—» v | X1 | X2
N LPrhnary
(L
NG \ .
State: x =1
k™
X2 | X1
Backups

Strong consistency is broken!

Slide 4

What Makes Consistent Replication Expensive?

e Consistent replication protocols must solve two problems:

= Consistent Ordering: all replicas should appear to execute operations in the same order

= Durability: once completed, an operation must survive crashes.

e Previous protocols combined the two requirements

Client x, ///f x—3 | x—1 | x2
. X2 ;
Client > 3 | xeet | xe2 —| T3 Txe1 | xe2
2R
Client Primary
X3 [X1 | x2
Time to complete I I I
an operation 1RTT 1 RTT BaCkUps

for serialization

for replication

Slide 5

Exploiting Commutativity to Defer Ordering

e For performance: cannot do totally ordered replication in 2 RTTs

e Replicate just for durability & exploit commutativity to defer ordering
= Safe to reorder if operations are commutative (e.g. updates on different keys)

e Consistent Unordered Replication Protocol (CURP):
= When concurrent operations commute, replicate without ordering
= When not, fall back to slow totally-ordered replication

Slide 6

Overview of CURP

e Primary returns execution results immediately (before syncing to backups)

e Clients directly replicate to ensure durability

client) = [[xealyos 27} 2| [t [xe2 "
A 1
A Primary garbage lBackups
; collection
Client -
\ Z— 1 - Withess
y<9 e No ordering info
l C e Temporary until primary replicates to backups
Witnesses e Witness data are replayed during recovery

Time to complete | |

. | |
an operation 1 RTT

Slide 7

Normal Operation

e Clients send an RPC request to primary and witnesses in parallel

e If all withesses accepted (saved) request, client can complete operation
safely without sync to backups.

e o\ 000000000000 _____
Vv T | async
9\{:3//’(“ | X1 [X2 | y«5 1 zT S L e [xe2
N e C
e Primary

Client Backups

r:/.eCO/‘OI

e(\7lz ™

,Of@O,

y<S
\

Withesses

Slide 8

Normal Operation (continued.)

e |f any witness rejected (not saved) request, client must wait for sync to
backups.
= QOperation completes in 2 RTTs mostly (worst case 3 RTTs)

wq k&
S T T T i
@G‘/\ “7}/2‘ X1 | X2 }I.‘:5__:_Z_‘_T_7__: — I xe—1 | xe2 y(_5 2 7
% ‘

@ “oce® Primary ‘
Client Backups

“ reCo

Z‘\?:, ,.d .

fed
y<—5 e When a primary receives a sync request,
i usually syncing to backups is already
[completed or at least initiated

Withesses

Slide 9

Crash Recovery

e First load from a backup and then replay requests in a witness

e Example:

| EE] e | xe2 y«—5 | z7

ll ?
Backups .

——— :

|

|

O .

z—1 [)
y<«—95 || State: x=2,y=5,z=7

([| X1 | xe2 | ye5 | zT7

Witnhesses " New Primary

Slide 10

3 Potential Problems for Strong Consistency

1. Replay from witness may be out of order
= Witnesses only keep commutative requests

2. Primaries may reveal not-yet-durable data to other clients
= Primaries detect & block reads of unsynced data

3. Requests replayed from witness may have been already recovered
from backup

= Detect and avoid duplicate execution using RIFL

Slide 11

P1l. Replay From Witnhess May Be Out Of Order

e Witness has no way to know operation order determined by primary

e Witness detects non-commutative operations and rejects them

= Then, client needs to issue explicit sync request to primary

e Okay to replay in any order

Client

y<—S

“accepted

Withess

Client

x4

rejected

X—3

Withess

Slide 12

P2. Primaries May Reveal Not-yet-durable Data

e Primary doesn’t know if an operation is made durable in withesses
e Subsequent operations (e.g. reads) may externalize the new data

Recorded in witnesses or not?

Client A Q State: x = 3

’ async
| X1 X<—2< N - > ... X1 | x2 n
S S
€% Prima Backups
ClientB) %47 Y p

e Must wait for sync to backups if a client request depends on any
unsynced updates

Slide 13

P3. Replay Can Cause Duplicate Executions

e A client request may exist both in backups and witnesses.

e Replaying operations recovered by backups endangers consistency

| Xe—1 | X2 | X3 "

ackups

[~ Detect & ignore duplicate
77 @ requests, e.g. RIFL [SOSP’15]
X2 State: x: 2, y: 7
T | X1 | X2 | X3 M z—1
Witnesses

New primary

Slide 14

Performance Evaluation of CURP

> Implemented in Redis and RAMCloud

Performance

Fast KV cache

| &B redis [

Consistently replicated &
As fast as no replication

]

:

RAMCloud

\Replicated in-memory KV store 2)

N

Consistency

Slide 15

RAMCloud’s Latency after CURP

e Writes are issued sequentially by a client to a master
= 40 B key, 100 B value
= Keys are randomly (uniform dist.) selected from 2 M unique keys

1 T -
os bl S\ - ' ~ Original (3B) ——
o Modian CURP (3B,3W) ——
: : ? CURP (1 B 1TW) —
Configuration § 7.1 us vs. 14 ps Unrepllcated -
e Xeon4cores (8T)@ 3 GHz é 01 F E
e Mellanox Connect-X 2 S
InfiniBand (24 Gbps) S i ‘ ‘ ‘ ‘ ‘ ‘
e Kernel-bypassing transport -Tc_% 0.01 F N N -
L - | 3 3 3 3]
‘ : a a a T
0001 N Lo Lo Lo | |
30 40 50 60 /70

Latency (us)

Slide 16

RAMCloud’s Throughput after CURP

e Thanks to CURP, can batch replication requests without impacting
latency: improves throughput

e Each client issues writes (40B key, 100B value) sequentially

Write Throughput (k write per second

900
800
700
600
500
400
300
200
100

0

— ' """""""""""""""" A """""""""" _
- WX - | —*— Unreplicated |
I A A | —8— CURP (1B, 1W) [
o | —=— GCURP (3B,3W)
- V.S - - | —+— Original (3 B))
A - - - -]
| | I | |
0 5 10 15 20 25 30

Client Count (number of clients)

- ﬁ ~6% per replica

4x

Slide 17

See Paper for...

e Design
= Garbage collection

= Reconfiguration handling (data migration, backup crash, witness crash)
= Read operation
= How to extend CURP to quorum-based consensus protocols

e Performance

= Measurement with skewed workloads (many non-commutative ops)
= Resource consumption by witness servers
= CURP’s impact on Redis’ performance

Slide 18

Related work

e Rely on commutativity for fast replication
= Generalized Paxos (2005): 1.5 RTT
= EPaxos (SOSP’13) : 2 RTTs in LAN, expensive read

e Rely on the network’s in-order deliveries of broadcasts
= Special networking hardware: NOPaxos (OSDI’'16), Speculative Paxos (NSDI'15)
= Presume & rollback: PLATO (SRDS’06), Optimistic Active Replication (ICDCS’01)
= Combine with transaction layer for rollback: TAPIR (SOSP’15), Janus (OSDI’16)

e CURP s

= Faster than other protocols using commutativity
= Doesn'’t require rollback or special networking hardware
= Easy to integrate with existing primary-backup systems

Slide 19

Conclusion

Total order is not necessary for consistent replication

CURP clients replicate without ordering in parallel with sending requests
to execution servers 2 1 RTT

Exploit commutativity for consistency

Improves both latency (2 RTTs -> 1 RTT) and throughput (4x)

= RAMCIloud’s latency: 14 uys — 7.1 us (no replication: 6.1 us)
= Throughput: 184 kops/sec — 728 kops/s (~4x)

Slide 20

