Shinjuku: Preemptive Scheduling for
Microsecond-Scale
Tail Latency

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Maziéres, Christos Kozyrakis

= WiT

Tail latency matters for datacenter workloads

@ User-perceived latency

determined by slowest
back-end node

Focus on individual leaf node:
minimize tail latency through
better scheduling

Achieving low tail latency at microsecond scale is hard

Problem: High OS overheads
Solution: OS Bypass, polling (no interrupts), run-to-completion (no scheduling)

Distributed Queues + First Come First Serve scheduling
d-FCFS (DPDK, IX, Arrakis)

Receive Side Scaling

T

S M

{fal

Worker Cores

Achieving low tail latency at microsecond scale is hard

Problem: Queue imbalance because d-FCFS is not work conserving

RSS HH
—] {=} 1dle
0 m o

Worker Cores

Achieving low tail latency at microsecond scale is hard

Problem: Queue imbalance because d-FCFS is not work conserving
Solution: Centralized queue - ¢-FCFS

3[<ulE
" | @) Approximation:
— L) d-FCFS + stealing
o m 3 @ e.g., ZygOS$

Worker Cores

ldeal centralized queue is better in simulation

60 I
—-= d-FCFS Exponential — u = 1us I
C-FCFS e.g. KVS with homogeneous GET /PUT |
m /
240 !
-’
T /'I
©
] - |
X 50! c-FCFS:/r(ec:r optimal
o d-FCI.=S: Iq:eInC);I sio(l)r’rés ‘pe’rformqnc¢
- growing at loa : ‘/"_/‘ \/l//
3 R —— -
0.0 0.2 0.4 0.6 0.8

1.0
Better) .

Is FCFS good enough when task duration varies?

1000
— « d-FCFS ./’ | Bimodal — 99.5% 0.5us — 0.5% 500us
c-FCFS /./ e.g. KVS with some RANGE queries

—~ 750 *
e s
> 4
lqc), 500 ‘/‘/
© ~
x
o)
@ 250
- c-FCFS: latency increases
% even for low load /
= | \/—/ |

1.0

0.0 0.2 0.4 0.6 0.8
Load Befter >

Problem: Short requests get stuck behind long ones

All cores are
hogged by
long requests

What if we could use the same preemptive

scheduling as Linux@

1000 .
— . d-FCFS /" | Bimodal — 99.5% 0.5us — 0.5% 500us | |
c-FCFS 4 e.g. KVS with some RANGE queries
= PS -1ms ,/ /
= : /
>, / [
c /
U 500 S /
S -~ /
X
> .
2507 PS—1ms: latency increases even d
® for low load (same as c-FCFS) _~
@ P
- —
0.0 0.2 0.4 0.6 0.8

1.0
Better > .

Solution: What if we could use preemptive
scheduling but at usec scale?

1000 : —
,/ Bimodal — 99.5% 0.5us — 0.5% 500us | ¢
/./ e.g. KVS with some RANGE queries f :
— 750) I
3 / / |
> /./ / |
-
9 500 " / :
S -~ / |
2 |
o) —« d-FCFS l
@ 2500 _ FcEsS PS-5us: near optimal performance :
o — = PS-5us with fast preemption I
o — PS- |
L ~ PE 1ms — \

=

0.0 0.2 0.4 0.6 0.8 .0
Load El> .

Insights

Effective scheduling for tail latency requires:

* Centralized queue
* Preemption
* Scheduling policies tailored for each workload

Problem: Microsecond scale requires

* Millions of queue accesses per second
* Preemption as often as every 5us
* Light-weight scheduling policies

Solution: Shinjuku

A single address-space operating system that achieves
microsecond-scale tail latency for all types of workloads
regardless of variability in task duration

Key Features:

* Dedicated core for scheduling and queue management

* Leverage hardware support for virtualization for fast preemption
* Very fast context switching in user space

* Match scheduling policy to task distribution and target latency

Qutline

* Shinjuku Design
* Preemption Mechanisms
* Scheduling Policies

* Fvaluation

Shinjuku Design

@ Process packets and generate
application-level requests

© Pass requests to centralized
dispatcher using shared

NIC

Interrupt

Dispatcher Core

(Runtime) memory

a Add requests to centralized
queue

@ Schedule requests to worker
cores using shared memory

© Send replies back to clients
through the networking

subsystem

© Interrupt long running requests
and schedule other requests
from the queue

Worker Cores

Networking Subsystem (Application)

(Runtime)

14

Qutline

* Shinjuku Design
* Preemption Mechanisms
* Scheduling Policies

* Fvaluation

15

Minimizing Preemption Overhead

Sender Overhead Receiver Overhead
Linux Signal 2084 cycles 2523 cycles

Dispatcher #::é} Ring 3 Worker Core

Applications

Non-root Ring O
Guest OS

Root Ring O
Kernel

Linux Signal

14

Minimizing Preemption Overhead

Sender Overhead Receiver Overhead
Linux Signal 2084 cycles 2523 cycles
Hardware Interrupts 2081 cycles 2662 cycles
Dispatcher Ring 3 Worker Core
Applications

Non-root Ring O
Guest OS

Root Ring O
Kernel

V MExit

14

Minimizing Preemption Overhead

Sender Overhead Receiver Overhead
Linux Signal 2084 cycles 2523 cycles
Hardware Interrupts 2081 cycles -85% 2662 cycles -52%
no VMExits 298 cycles 1212 cycles
Dispatcher o Worker Core
ing 3
Applications

Non-root Ring O
Guest OS

Root Ring O
Kernel VMExit

Map APIC to dispatcher’s Posted Interrupts
address space 14

V MExit

Minimizing Preemption Overhead

Sender Overhead Receiver Overhead
Linux Signal 2084 cycles 2523 cycles
Hardware Interrupts 2081 cycles -85% 2662 cycles -52%
no VMExits 298 cycles 1212 cycles
Dispatcher Worker Core
Root Ring O
Kernel
Map APIC to dispatcher’s Posted Interrupts

address space 14

Qutline

* Shinjuku Design
* Preemption Mechanisms
* Scheduling Policies

* Fvaluation

20

Scheduling policy

Case 1 Case 2

PUT

1) Which quefSSlelect from?

GET
2) Where to i yreempted
requests?

SCAN

Single Queue (SQ)

Multiple Queues (MQ)

21

Queve Selection Policy

Multiple Queues (MQ)

Waiting Time

Policy: Select the queue with the highest ratio:

Target Latency

Short requests: Initially low Target Latency = High Ratio

Long requests: Eventually high Waiting Time = High Ratio

22

Qutline

* Shinjuku Design
* Preemption Mechanisms
* Scheduling Policies

* Evaluation

Evaluation

Systems

Shinjuku — Centralized preemptive scheduling

14 Logical Cores for workers
1 Physical Core for both networker and dispatcher (1 Logical Core each)

IX — d-FCFS
ZygOS — d-FCFS + work stealing

16 Logical Cores for workers

Workloads

Synthetic benchmark with different service time distributions
RocksDB - in-memory database

24

99% Latency (us)

FENEL:]

1000

~
Ul
o

500

250

Shinjuku under low variability

—= IX
~—- ZygOS

| = Shinjuku-5Q

Synthetic Workload /!
Exponential — p=1us /

~

Shinjuku: Close to IX for

homogeneous workloads

2 3 4 5
Throughput (MRPS) Better >

25

Shinjuku under high variability

—-= X RocksDB
-—- Zyg(?S 99.5% GET - 5us
— Shinjuku-5Q 59 SCAN - 250us

88% lower

6.6x
>

100 200 300 400 500
Throughput (kRPS) Better >

600

26

How important is each optimization?

Single Queue no Preemption
7500 , 7500
50% GET - 5us : 50% SCAN - 1200us
= 5000 | ~.5000
> . @
= cC
c | S
@ .
o+t . -I(—DJ
L 3 /
Z L
o < 4
(2 2500 . ¥ 2500 K4
: / s 7
(@) . A ‘/
/ > —
. R
7
~
=== = Shinjuku-SQ no Preemption === Shinjuku-SQ no Preemption
0.0 2..5] 5.0- .7? 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Throughput (kRPS)

Throughput (kRPS)

27

20.0

How important is each optimization?
Single Queue with Preemption

7500

50% SCAN - 1200us

Preemption offers flatter
latency for some loss of

throughput

Shinjuku-SQ no Preemption
= Shinjuku-5Q with Preemption

7500 .
50% GET-5us ‘o
g ¥
= 5000 |
5 i
3 : |
-+ .'
I |
E ™
G]
X 2500 .
(@) * .
/
=== Shinjuku-SQ no Preemption .
= Shinjuku-5Q with Preemption ‘
00 I5 TS0 T TS 100125 150 175

Throughput (kRPS)

7.5 10.0 125 15.0

Throughput (kRPS)

0.0 2.5 5.0

17.5
28

20.0

How important is each optimization?
Multiple Queues with Preemption

7500 : 7500 - I
50% GET - 5us : 50% SCAN - 1200us .
~5000 - I
> S) .
c : | Multi-queue policy recovers
] "
© | the lost throughput
E [
G i
X2 2500 e
> /)
o / : RS
=== Shinjuku-SQ no Preemption . === Shinjuku-SQ no Preemption
= Shinjuku-SQ with Preemption * . ===+ Shinjuku-SQ with Preemption
= Shinjuku-MQ _,J/ =~ Shinjuku-MQ
—_—
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Throughput (kRPS) Throughput (kRPS) ”

10.0

Throughput (MRPS)

Does Shinjuku scale?

7.5]

5.0

Synthetic Workload
Fixed Tus

One dispatcher can scale
up to 5SMRPS and 11 cores

—-= 1 Dispatcher

5 10 15 20
Physical Worker Cores

30

Throughput (MRPS)

10.0

7.5]

5.0

Does Shinjuku scale?

Use multiple
dispatchers and scale

up to 9.6 MRPS

—-= 1 Dispatcher
——= 2 Dispatchers

5 10 15

Physical Worker Cores

20

31

More details in the paper

* Fast context switching

* How Shinjuku supports high line rates

* Placement policy of interrupted requests

* The problems of RSS-only scheduling of requests to cores

* More performance analysis

Conclusion

Low tail latency for general workloads requires:
* Preemptive Scheduling

* Centralized Queueing
* Flexible Scheduling Policies

Shinjuku meets these demands at microsecond scale:
* Scalable centralized queue using dedicated core

* Preemption every Sus
* Latency-driven scheduling policies

O github.com/stanford-mast/shinjuku

33

https://github.com/stanford-mast/shinjuku

Backup

Shinjuku Network Scaling

-+ 64-Byte Frames
- = 258-Byte Frames
Saturates

30/ modern NICs
. even for small
m L]
o packet sizes
©
a 20
e
(@)]
>
o
= R

7
10 -7
V4
/ [e——
” T
/ —-—
” s
- ’-’-—
""
’-—"‘
0 5 10 15 20

Worker Cores

35

How important is each optimization?

7500 . 7500 :
50% GET - Sus " 50% SCAN - 1200us
~5000 : 5000
5 | 0
c F S
2 | 2
9 —
¥ =
I] <
O) A
X 2500 / o 2500
o) /: o
o Zyg0S // ; o ZygOS
—-— Shinjuku-SQ no Preemption P ’ —-— Shinjuku-SQ no Preemption
------- Shinjuku-SQ - - Shinjuku-SQ
—— Shinjuku-MQ : —— Shinjuku-MQ
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 13%5

Throughput (kRPS)

Throughput (kRPS)

20.0

Slowdown=

Total Lat . .
D OLen BERERY Time slice matters
Service Time

100 , I
—] :
5us | /
S] .
20us : ,' ./
75| — 50us | | : | I, | /
g 1OOUS :: II !
S Synthetic Workload : ! /
E 50 Bimodal | | II | .[
wn
X
o))
o))
25
oo
®
o
0 50 100 150 200 250

Throughput (kRPS) Better > 37

