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Tail latency matters for datacenter workloads

@ User-perceived latency

determined by slowest
back-end node

Focus on individual leaf node:
minimize tail latency through
better scheduling




Achieving low tail latency at microsecond scale is hard

Problem: High OS overheads
Solution: OS Bypass, polling (no interrupts), run-to-completion (no scheduling)

Distributed Queues + First Come First Serve scheduling
d-FCFS (DPDK, IX, Arrakis)
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Achieving low tail latency at microsecond scale is hard

Problem: Queue imbalance because d-FCFS is not work conserving
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Achieving low tail latency at microsecond scale is hard

Problem: Queue imbalance because d-FCFS is not work conserving
Solution: Centralized queue - ¢-FCFS
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ldeal centralized queue is better in simulation
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Is FCFS good enough when task duration varies?
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Problem: Short requests get stuck behind long ones

All cores are
hogged by
long requests




What if we could use the same preemptive

scheduling as Linux@
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Solution: What if we could use preemptive
scheduling but at usec scale?
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Insights

Effective scheduling for tail latency requires:

* Centralized queue
* Preemption
* Scheduling policies tailored for each workload

Problem: Microsecond scale requires

* Millions of queue accesses per second
* Preemption as often as every 5us
* Light-weight scheduling policies



Solution: Shinjuku

A single address-space operating system that achieves
microsecond-scale tail latency for all types of workloads
regardless of variability in task duration

Key Features:

* Dedicated core for scheduling and queue management

* Leverage hardware support for virtualization for fast preemption
* Very fast context switching in user space

* Match scheduling policy to task distribution and target latency
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Shinjuku Design

@ Process packets and generate
application-level requests

© Pass requests to centralized
dispatcher using shared

NIC

Interrupt

Dispatcher Core

(Runtime) memory

a Add requests to centralized
queue

@ Schedule requests to worker
cores using shared memory

© Send replies back to clients
through the networking

subsystem

© Interrupt long running requests
and schedule other requests
from the queue

Worker Cores

Networking Subsystem (Application)

(Runtime)
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Minimizing Preemption Overhead

Sender Overhead Receiver Overhead
Linux Signal 2084 cycles 2523 cycles

Dispatcher #::é} Ring 3 Worker Core

Applications

Non-root Ring O
Guest OS

Root Ring O
Kernel

Linux Signal
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Minimizing Preemption Overhead
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Minimizing Preemption Overhead

Sender Overhead Receiver Overhead
Linux Signal 2084 cycles 2523 cycles
Hardware Interrupts 2081 cycles -85% 2662 cycles -52%
no VMExits 298 cycles 1212 cycles
Dispatcher Worker Core
Root Ring O
Kernel
Map APIC to dispatcher’s Posted Interrupts
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Scheduling policy

Case 1 Case 2

PUT

1) Which quefSSlelect from?

GET
2) Where to i yreempted
requests?

SCAN

Single Queue (SQ)

Multiple Queues (MQ)

21



Queve Selection Policy

Multiple Queues (MQ)

Waiting Time

Policy: Select the queue with the highest ratio:

Target Latency

Short requests: Initially low Target Latency = High Ratio

Long requests: Eventually high Waiting Time = High Ratio
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Evaluation

Systems

Shinjuku — Centralized preemptive scheduling

14 Logical Cores for workers
1 Physical Core for both networker and dispatcher (1 Logical Core each)

IX — d-FCFS
ZygOS — d-FCFS + work stealing

16 Logical Cores for workers

Workloads

Synthetic benchmark with different service time distributions
RocksDB - in-memory database
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Shinjuku under high variability
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How important is each optimization?

Single Queue no Preemption
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How important is each optimization?
Single Queue with Preemption

7500

50% SCAN - 1200us

Preemption offers flatter
latency for some loss of

throughput

Shinjuku-SQ no Preemption
= Shinjuku-5Q with Preemption

7500 .
50% GET-5us ‘o
g ¥
= 5000 |
5 i
3 : |
-+ .'
I |
E ™
G ]
X 2500 .
(@) * .
/
=== Shinjuku-SQ no Preemption .
= Shinjuku-5Q with Preemption ‘
00 I5 TS0 T TS 100125 150 175

Throughput (kRPS)

7.5 10.0 125 15.0

Throughput (kRPS)

0.0 2.5 5.0

17.5
28

20.0



How important is each optimization?
Multiple Queues with Preemption
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10.0

Throughput (MRPS)

Does Shinjuku scale?

7.5]

5.0

Synthetic Workload
Fixed Tus

One dispatcher can scale
up to 5SMRPS and 11 cores

—-= 1 Dispatcher

5 10 15 20
# Physical Worker Cores
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Throughput (MRPS)

10.0

7.5]

5.0

Does Shinjuku scale?

Use multiple
dispatchers and scale

up to 9.6 MRPS

—-= 1 Dispatcher
——= 2 Dispatchers

5 10 15

# Physical Worker Cores

20
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More details in the paper

* Fast context switching

* How Shinjuku supports high line rates

* Placement policy of interrupted requests

* The problems of RSS-only scheduling of requests to cores

* More performance analysis



Conclusion

Low tail latency for general workloads requires:
* Preemptive Scheduling

* Centralized Queueing
* Flexible Scheduling Policies

Shinjuku meets these demands at microsecond scale:
* Scalable centralized queue using dedicated core

* Preemption every Sus
* Latency-driven scheduling policies

O github.com/stanford-mast/shinjuku
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Shinjuku Network Scaling

-+ 64-Byte Frames
- = 258-Byte Frames
Saturates
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How important is each optimization?

7500 . 7500 :
50% GET - Sus " 50% SCAN - 1200us
~5000 : 5000
5 | 0
c F S
2 | 2
9 —
¥ =
I ] <
O ) A
X 2500 / o 2500
o) /: o
o Zyg0S // ; o ZygOS
—-— Shinjuku-SQ no Preemption P ’ —-— Shinjuku-SQ no Preemption
------- Shinjuku-SQ - - Shinjuku-SQ
—— Shinjuku-MQ : —— Shinjuku-MQ
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 13%5

Throughput (kRPS)

Throughput (kRPS)

20.0



Slowdown=
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