Stable and Practical AS Relationship Inference with ProbLink

Yuchen Jin¹, Colin Scott², Amogh Dhamdhere³, Vasileios Giotsas⁴, Arvind Krishnamurthy¹, Scott Shenker²

¹University of Washington, ²UC Berkeley, ³CAIDA, ⁴Lancaster University

Autonomous System (AS) and BGP

AS Relationships

ASes keep relationships confidential!

Customer-to-provider (Cust-Prov) Peer-to-peer (Peer-Peer) Customer AS pays the provider AS for transit Settlement free

Motivation

- AS relationship inference
 application domains
 - Understanding Internet evolution
 - Identifying malicious ASes
 - Detecting network congestion

- A research problem which has been studied for ~2 decades
 - > Gao (2001)
 - Subramanian et al. (2002)
 - > Di Battista et al. (2003)
 - Dimitropoulos et al. (2007)
 - > **AS-Rank** (2013)

99% accuracy (1% error rate)

How does AS-Rank perform for actual applications?

Case Study: Route Leak Detection

On November 5, 2012, Google's services cannot be accessible in Asia for half an hour.

Case Study: Route Leak Detection

Valley-free assumption:

Path consists of Cust-Prov links, followed by zero or one Peer-Peer link, followed by Prov-Cust links. (uphill – cross – downhill)

Detection method: Check valley-free violations

AS relationship validation dataset:

- relationships encoded using the Community attribute in BGP paths
 - E.g., AS209 (CenturyLink) uses the Community 13570 to tag routes received from customers

Route Leak Detection Using AS-Rank

Detect route leaks using AS-Rank:

- Low precision: only 20% of the route leaks detected using AS-Rank were real route leaks
- Low recall: 78% of the real leaks were missed

Outline

• AS-Rank does not meet the demands of actual applications.

- We develop a simple inference algorithm *CoreToLeaf* that achieves accuracy comparable to *AS-Rank*.
 Most links in the validation dataset are relatively easy to infer.
- We identify different subsets of the validation dataset that are hard to infer.
- We develop **ProbLink** a probabilistic AS relationship inference algorithm.
- Evaluation

A Simple Algorithm: CoreToLeaf

1. Infer a transit-free clique (i.e., Tier-1) ASes.

2. For each path that traverses a Tier-1:

3. Label all remaining unclassified links as Peer-Peer.

CoreToLeaf vs. AS-Rank

		April 1 st	, 2017			
	Validation dataset			Route Leak Detection		
Algorithm	Precision	Recall	Conflict (%)	Precision	Recall	
	(%)	(%)	(,,,)	(%)	(%)	
CoreToLeaf	97.0	97.3	0.12	19.8	22.1	
AS-Rank	98.4	98.6	0	8.1	5.6	

Implications:

- 1. Most links are easy to infer
- 2. Need to focus on *hard* links

Extract Hard Links

• Use gradient boosting decision tree to calculate feature importance

Category	<i>CoreToLeaf</i> error (%)	<i>AS-Rank</i> error (%)	
Max node degree < 100	13.7	8.6	
Observed by 50-100 VPs	4.7	9.3	April 1 st , 2017
Non-VP & Non-Tier1	5.3	9.0	-
Unlabeled Stub-clique	95.5	33.4	
Conflict	100	8.1	

 Fraction of *hard* links in the validation dataset are 3X fewer than that in the overall links

The validation dataset is skewed to easy links

Outline

- AS-Rank does not meet the demands of actual applications.
- We develop a simple inference algorithm *CoreToLeaf* that achieves accuracy comparable to *AS-Rank*.
 Most links in the validation dataset are relatively easy to infer.
- We identify different subsets of the validation dataset that are hard to infer.
- We develop **ProbLink** a probabilistic AS relationship inference algorithm.

Evaluation

(A) The structure of paths that use the link≻Triplet feature

(B) The structure of paths that **do not** use the link ≻Non-path feature

(C) Connectivity properties of the link

- Distance to clique
- Number of VPs observing a link
- Co-located IXP/peering facility

Triplet Feature

Intuition: Most triplets are valley-free compliant, but we should tolerate some valleys.

Likelihood of valleys is derived from data

$$\begin{array}{c} \begin{array}{c} & \mathbf{t_1} \\ \mathbf{A} \end{array} \begin{array}{c} \mathbf{t_1} \\ \mathbf{B} \end{array} \begin{array}{c} \mathbf{t_2} \\ \mathbf{C} \end{array} \begin{array}{c} \mathbf{t_3} \\ \mathbf{D} \end{array} \end{array}$$

t ∈ {Cust-Prov, Prov-Cust, Peer-Peer}

Definition: Attribute probabilistic values for the relationships of the first and the last links given the relationship of the middle link $- P(t_1, t_3 | t_2)$

Non-path Feature

Intuition: If none of the Peer-Peer/Prov-Cust links coming into an AS are followed by a specific link, then the link is likely not a Prov-Cust link.

Definition: Attribute probabilistic values for the number of previous Peer-Peer/Prov-Cust links given the relationship of the next link.

- P(# Peer-Peer + # Prov-Cust | t)

Connectivity Features

Distance to clique feature: P(dist(AS₁), dist(AS₂) | t)

Intuition:

- High-tier ASes are closer to clique ASes than low-tier ASes
- Peer-Peer links are typically between the ASes in the same tier

Vantage point feature: P(# VPs observing AS₁ -- AS₂ | t) Intuition: Prov-Cust links are more likely to be seen by more VPs

<u>Co-located IXP and co-located peering facility feature</u>: (extracted from PeeringDB) P(# IXPs/facilities | t) Intuition: The more IXPs or facilities two ASes are co-located in, the more likely they are peering with each other Use *CoreToLeaf* to come up with an initial labeling *Repeat*:

- Compute the conditional probability distribution of each feature based on current labels
 - $P(f_i | t)$ E.g., P(# VPs observing a link | t)
- Predict new label for each link using Naïve Bayes and conditional probability distributions

•
$$\hat{t} = \arg\max_{t} P(t) \prod_{i=1}^{n} P(f_i \mid t)$$

Stop upon convergence

Outline

- AS-Rank does not meet the demands of actual applications.
- We develop a simple inference algorithm *CoreToLeaf* that achieves accuracy comparable to *AS-Rank*.
 Most links in the validation dataset are relatively easy to infer.
- We identify different subsets of the validation dataset that are hard to infer.
- We develop **ProbLink** a probabilistic AS relationship inference algorithm.
- Evaluation

Accuracy Comparison

How well can *ProbLink* perform across years? Compare inference error rates to that of *AS-Rank*:

The whole validation dataset: 1.7X improvement
 Hard links: 1.8X to 6.1X improvement

Category	<i>AS-Rank</i> error (%)	<i>ProbLink</i> error (%)	Improvement
Observed by 50-100 VPs	8.8	1.5	5.9X
Non-VP & Non-Tier1	4.4	1.7	2.6X
Unlabeled Stub-clique	33.6	5.5	6.1X
Conflict	6.8	3.8	1.8X
Max node degree < 100	8.6	4.4	2.0X

Stability Analysis

- AS-Rank is sensitive to snapshot selection
- *ProbLink* is consistently stable

Route Leak Detection

Route leak detection method: Check valley-free violations

Precision

Recall

ProbLink	81.1%
AS-Rank	19.8%
CoreToLeaf	8.1%

ProbLink	76.2%	
AS-Rank	22.1%	
CoreToLeaf	5.6%	

22

Practical Applications

Improvements over AS-Rank:

- Route leak detection
 - > Precision: 4.1X
 - Recall: 3.4X
- Complex relationship inference
 - Reveals 27% more complex relationships
- Predicting the impact of selective advertisement
 > Increases the precision by 34%

Conclusion

- High accuracy in validation dataset does not translate to high application-level performance
- Most links in the validation dataset are easy to infer
- Constructed hard links sets and use them as benchmarks
- Developed ProbLink and allow for integration of many noisy but useful attributes
- Demonstrated that ProbLink is more effective and stable for real applications than previous techniques