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ASes keep relationships confidential!



• AS relationship inference 
application domains
Ø Understanding Internet evolution
Ø Identifying malicious ASes
Ø Detecting network congestion

Motivation

• A research problem which has 
been studied for ~2 decades
Ø Gao (2001)
Ø Subramanian et al. (2002)
Ø Di Battista et al. (2003)
Ø Dimitropoulos et al. (2007)
Ø AS-Rank (2013)

How does AS-Rank perform for actual applications?

99% accuracy (1% error rate)
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AS 15169
Google

AS 3491
PCCW

AS 23947
Moratel

AS Path: 23947, 15169
Prefix: 8.8.8.0/24

AS Path: 3491, 15169
Prefix: 8.8.8.0/24

On November 5, 2012, Google’s services cannot be accessible in Asia for half an hour.

Peer-Peer

Peer-Peer

AS Path: 15169
Prefix: 8.8.8.0/24

AS Path: 3491, 23947, 15169
Prefix: 8.8.8.0/24

Case Study: Route Leak Detection
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AS Path: 23947, 15169
Prefix: 8.8.8.0/24



Valley-free assumption:
Path consists of Cust-Prov links, followed by zero or one Peer-Peer link, 
followed by Prov-Cust links. (uphill – cross – downhill)

Valley-free violation:

Prov-Cust

Peer-Peer

Case Study: Route Leak Detection

Google
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Route Leak Detection

AS relationship validation dataset: 
Ø relationships encoded using the Community attribute in 

BGP paths
o E.g., AS209 (CenturyLink) uses the Community 13570 to tag 

routes received from customers

Detection method: Check valley-free violations
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Detect route leaks using AS-Rank:
• Low precision: only 20% of the route leaks detected 

using AS-Rank were real route leaks
• Low recall: 78% of the real leaks were missed

Route Leak Detection Using AS-Rank
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Outline
• AS-Rank does not meet the demands of actual applications.

• We develop a simple inference algorithm CoreToLeaf that 
achieves accuracy comparable to AS-Rank.
ØMost links in the validation dataset are relatively easy to infer.

• We identify different subsets of the validation dataset that are
hard to infer.

• We develop ProbLink - a probabilistic AS relationship inference 
algorithm.

• Evaluation 9



1. Infer a transit-free clique (i.e., Tier-1) ASes.

A Simple Algorithm: CoreToLeaf

A 3356B C D
Cust-Prov

E 209F D C

BGP path1

BGP path2

Conflict
can
occur!

2. For each path that traverses a Tier-1:

3. Label all remaining unclassified links as Peer-Peer.

Prov-Cust

Cust-Prov Prov-Cust
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CoreToLeaf vs. AS-Rank

Algorithm

Validation dataset
Conflict
(%)

Route Leak Detection

Precision Recall Precision Recall
(%) (%) (%) (%)

CoreToLeaf 97.0 97.3 0.12 19.8 22.1
AS-Rank 98.4 98.6 0 8.1 5.6

1. Most links are easy to infer
2. Need to focus on hard links

Implications:

April 1st, 2017
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Extract Hard Links

Category
CoreToLeaf

error (%)
AS-Rank
error (%)

Max node degree < 100 13.7 8.6
Observed by 50-100 VPs 4.7 9.3

Non-VP & Non-Tier1 5.3 9.0
Unlabeled Stub-clique 95.5 33.4

Conflict 100 8.1

• Use gradient boosting decision tree to calculate feature importance

April 1st, 2017

• Fraction of hard links in the validation dataset are 3X fewer than
that in the overall links

The validation dataset is skewed to easy links
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Outline
• AS-Rank does not meet the demands of actual applications.

• We develop a simple inference algorithm CoreToLeaf that 
achieves accuracy comparable to AS-Rank.
ØMost links in the validation dataset are relatively easy to infer.

• We identify different subsets of the validation dataset that are
hard to infer.

• We develop ProbLink - a probabilistic AS relationship inference 
algorithm.

• Evaluation 13



Feature Design

(A) The structure of paths that use the link 

(B) The structure of paths that do not use the link

(C) Connectivity properties of the link
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Triplet Feature
Intuition: Most triplets are valley-free compliant, but we should tolerate 
some valleys.
Ø Likelihood of valleys is derived from data

Definition: Attribute probabilistic values for the relationships of the first 
and the last links given the relationship of the middle link – P(t1, t3|t2)

A CB D
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t1 t2 t3

t ∈ {Cust-Prov, Prov-Cust, Peer-Peer}



X

B C

Prov-CustY

Z

No path contains:
• X-B-C
• Y-B-C
• Z-B-C

Non-path Feature
Intuition: If none of the Peer-Peer/Prov-Cust links coming into an AS are 
followed by a specific link, then the link is likely not a Prov-Cust link.
Definition: Attribute probabilistic values for the number of previous Peer-
Peer/Prov-Cust links given the relationship of the next link. 
– P(# Peer-Peer + # Prov-Cust | t)
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Distance to clique feature: P(dist(AS1), dist(AS2) | t)
Intuition:
- High-tier ASes are closer to clique ASes than low-tier ASes
- Peer-Peer links are typically between the ASes in the same tier

Vantage point feature: P(# VPs observing AS1 -- AS2| t)
Intuition: Prov-Cust links are more likely to be seen by more VPs

Co-located IXP and co-located peering facility feature:
(extracted from PeeringDB) P(# IXPs/facilities| t)

Intuition: The more IXPs or facilities two ASes are co-located in, the 
more likely they are peering with each other

Connectivity Features
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Use CoreToLeaf to come up with an initial labeling
Repeat:
Ø Compute the conditional probability distribution of 

each feature based on current labels
• E.g., P(# VPs observing a link| t)

Ø Predict new label for each link using Naïve Bayes and 
conditional probability distributions
•

Stop upon convergence

ProbLink Algorithm
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Outline
• AS-Rank does not meet the demands of actual applications.

• We develop a simple inference algorithm CoreToLeaf that 
achieves accuracy comparable to AS-Rank.
ØMost links in the validation dataset are relatively easy to infer.

• We identify different subsets of the validation dataset that are
hard to infer.

• We develop ProbLink - a probabilistic AS relationship inference 
algorithm.

• Evaluation 19



Accuracy Comparison

How well can ProbLink perform across years?
Compare inference error rates to that of AS-Rank:

Ø The whole validation dataset: 1.7X improvement 
Ø Hard links: 1.8X to 6.1X improvement

Category
AS-Rank
error (%)

ProbLink
error (%)

Improvement

Observed by 50-100 VPs 8.8 1.5 5.9X
Non-VP & Non-Tier1 4.4 1.7 2.6X

Unlabeled Stub-clique 33.6 5.5 6.1X
Conflict 6.8 3.8 1.8X

Max node degree < 100 8.6 4.4 2.0X 20



Stability Analysis
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• AS-Rank is sensitive to snapshot selection
• ProbLink is consistently stable

30 consecutive 1-day snapshots



ProbLink 81.1%
AS-Rank 19.8%

CoreToLeaf 8.1%

Precision Recall

ProbLink 76.2%
AS-Rank 22.1%

CoreToLeaf 5.6%

Route Leak Detection
Route leak detection method: Check valley-free violations
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Practical Applications

Improvements over AS-Rank:
• Route leak detection

4.1X
3.4X

• Complex relationship inference
27% 

• Predicting the impact of selective advertisement 
34%
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Conclusion
• High accuracy in validation dataset does not translate to high 

application-level performance

• Most links in the validation dataset are easy to infer

• Constructed hard links sets and use them as benchmarks

• Developed ProbLink and allow for integration of many noisy but 
useful attributes

• Demonstrated that ProbLink is more effective and stable for real 
applications than previous techniques
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