
Automatically Correcting
Networks with NEAt

Wenxuan Zhou, Jason Croft, Bingzhe Liu,

Elaine Ang, Matthew Caesar
University of Illinois at Urbana-Champaign

A simple idea about complexity…

 2

Networks are so complex it’s hard to
make sure they’re doing the right thing.

They instill policies on their behavior:

• no untrusted traffic entering a secure zone
• the preference of one path over another
• loop & black hole avoidance
• …

What is a network supposed to do?

 3

Intents

IPv
6

OSPF-TE

VPN

VLAN
NAT

Any
ca

st

RSVP-TE

MPLSM
ulticast

Virtualization

SDN

CloudiBGP, eBGP
IPSec

A Typical Enterprise Network

 4
Source: http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Medium_Enterprise_Design_Profile/MEDP/chap5.html

Network errors are common
Lots of problems arise today

 5

89% of operators are not certain their
configuration changes are safe. [Kinetic NSDI’15]

Ebay Target
JP Morgan Chase

Home Depot

Korea Credit Bureau

US Office of Personnel Management
AshleyMadison.com

Anthem
European Central Bank

Sony Pictures
StaplesUPS

Uber

Vodafone

Twitch.tvJapan Airlines

Premera

CarPhone Warehouse

Adult Friend Finder
AOL Community Health Service

SlackNMBS

NASDAQ

Washington State court system

Mozilla

New York Taxis

Neiman Marcus

MSpyHacking Team

Kissinger Cables

Domino’s Pizzas

D&B. Altegrity

Carefirst

British Airways

Australian Immigration Department

http://AshleyMadison.com

Networks are so complex it’s hard to make
sure they’re doing the right thing.

Let’s automate.

What to automate?

 6

Many have tried.

Automatically identifying errors in networks (Verification)

Automatically synthesize correct networks

 7

repairs. Furthermore, an interactive mode would allow
the application to ensure its state is consistent with that of
the network, as it can update its own state after choosing
one of several potential repairs for the policy-violating
update.

3 Design

At the core of NEAt is a verification and correction layer,
which ensures only updates conforming to the network
policies are sent onto the network. This layer receives
updates from one of two integration modes with the SDN
control infrastructure: pass-through and interactive.

3.1 Verification and Repair

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

NEAt’s verification and correction engines ensure the
network is always consistent with the defined policy. To
start, NEAt takes as input a policy graph (1), which
defines the network policies (e.g., reachability, segmen-
tation, waypointing) in the form of a directed graph.
Next, NEAt receives updates (e.g., flow modification
messages) from the SDN control infrastructure. With
each update (2), NEAt applies the change to a network
model, from which the ECs affected by the update are
computed. Using the policy graph, NEAt checks each af-
fected EC in the network model for policy violations us-
ing the verification engine (3). If the update does not in-
troduce any violations, it is sent onto the network. How-
ever, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to
the correction engine (4). The optimizer returns a set
of edges to be added or removed to the EC’s configura-
tion graph, which are then applied to the network model,
converted to OpenFlow rules, and sent to the forwarding
devices (5).

NEAt’s correction engine models the process of dis-
covering repairs as an optimization problem. Our explo-
ration of alternative approaches guided us toward this op-
timization problem-based solution for performance con-

siderations. For example, consider a brute force ap-
proach that discovers repairs for a given EC by testing all
possible permutations of edge additions and removals to
the EC’s configuration graph. A repair that requires only
adding edges, from 10 possible unused topology edges,
would need to explore 10! (˜3.6M) permutations. If the
violating property can be checked in just 1ms, each EC
could take up to 10 minutes to find a repair. Therefore
we use the formulation described in §5 for our repair dis-
covery process.

3.2 Interaction Modes

Figure 2: Interaction modes of NEAt.

With each repair, inconsistencies between application
state and network state will arise. To prevent applica-
tions from diverging from the underlying network state,
NEAt exposes two integration modes: pass-through and
interactive.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modifications to the controller applications. Both the
controller and applications are unaware of NEAt in this
mode. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes it to the verification and repair engines.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted change.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

3

Policies

Network
abstraction

Verifier

Repair

Manual Intervention ☹	

Policies Synthesizer

repairs. Furthermore, an interactive mode would allow
the application to ensure its state is consistent with that of
the network, as it can update its own state after choosing
one of several potential repairs for the policy-violating
update.

3 Design

At the core of NEAt is a verification and correction layer,
which ensures only updates conforming to the network
policies are sent onto the network. This layer receives
updates from one of two integration modes with the SDN
control infrastructure: pass-through and interactive.

3.1 Verification and Repair

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

NEAt’s verification and correction engines ensure the
network is always consistent with the defined policy. To
start, NEAt takes as input a policy graph (1), which
defines the network policies (e.g., reachability, segmen-
tation, waypointing) in the form of a directed graph.
Next, NEAt receives updates (e.g., flow modification
messages) from the SDN control infrastructure. With
each update (2), NEAt applies the change to a network
model, from which the ECs affected by the update are
computed. Using the policy graph, NEAt checks each af-
fected EC in the network model for policy violations us-
ing the verification engine (3). If the update does not in-
troduce any violations, it is sent onto the network. How-
ever, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to
the correction engine (4). The optimizer returns a set
of edges to be added or removed to the EC’s configura-
tion graph, which are then applied to the network model,
converted to OpenFlow rules, and sent to the forwarding
devices (5).

NEAt’s correction engine models the process of dis-
covering repairs as an optimization problem. Our explo-
ration of alternative approaches guided us toward this op-
timization problem-based solution for performance con-

siderations. For example, consider a brute force ap-
proach that discovers repairs for a given EC by testing all
possible permutations of edge additions and removals to
the EC’s configuration graph. A repair that requires only
adding edges, from 10 possible unused topology edges,
would need to explore 10! (˜3.6M) permutations. If the
violating property can be checked in just 1ms, each EC
could take up to 10 minutes to find a repair. Therefore
we use the formulation described in §5 for our repair dis-
covery process.

3.2 Interaction Modes

Figure 2: Interaction modes of NEAt.

With each repair, inconsistencies between application
state and network state will arise. To prevent applica-
tions from diverging from the underlying network state,
NEAt exposes two integration modes: pass-through and
interactive.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modifications to the controller applications. Both the
controller and applications are unaware of NEAt in this
mode. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes it to the verification and repair engines.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted change.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

3

repairs. Furthermore, an interactive mode would allow
the application to ensure its state is consistent with that of
the network, as it can update its own state after choosing
one of several potential repairs for the policy-violating
update.

3 Design

At the core of NEAt is a verification and correction layer,
which ensures only updates conforming to the network
policies are sent onto the network. This layer receives
updates from one of two integration modes with the SDN
control infrastructure: pass-through and interactive.

3.1 Verification and Repair

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

NEAt’s verification and correction engines ensure the
network is always consistent with the defined policy. To
start, NEAt takes as input a policy graph (1), which
defines the network policies (e.g., reachability, segmen-
tation, waypointing) in the form of a directed graph.
Next, NEAt receives updates (e.g., flow modification
messages) from the SDN control infrastructure. With
each update (2), NEAt applies the change to a network
model, from which the ECs affected by the update are
computed. Using the policy graph, NEAt checks each af-
fected EC in the network model for policy violations us-
ing the verification engine (3). If the update does not in-
troduce any violations, it is sent onto the network. How-
ever, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to
the correction engine (4). The optimizer returns a set
of edges to be added or removed to the EC’s configura-
tion graph, which are then applied to the network model,
converted to OpenFlow rules, and sent to the forwarding
devices (5).

NEAt’s correction engine models the process of dis-
covering repairs as an optimization problem. Our explo-
ration of alternative approaches guided us toward this op-
timization problem-based solution for performance con-

siderations. For example, consider a brute force ap-
proach that discovers repairs for a given EC by testing all
possible permutations of edge additions and removals to
the EC’s configuration graph. A repair that requires only
adding edges, from 10 possible unused topology edges,
would need to explore 10! (˜3.6M) permutations. If the
violating property can be checked in just 1ms, each EC
could take up to 10 minutes to find a repair. Therefore
we use the formulation described in §5 for our repair dis-
covery process.

3.2 Interaction Modes

Figure 2: Interaction modes of NEAt.

With each repair, inconsistencies between application
state and network state will arise. To prevent applica-
tions from diverging from the underlying network state,
NEAt exposes two integration modes: pass-through and
interactive.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modifications to the controller applications. Both the
controller and applications are unaware of NEAt in this
mode. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes it to the verification and repair engines.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted change.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

3

≈ a compiler
Repeated when policies change

Do not cooperate with users (operators/applications)
☹	

7,89:&*%#:GE+/%

•  Q'EE%J:@*%),JJG('):H,(%G(&*E':DE*%

•  R:S,&%IG&>E*%F,&%/G))*//%,F%7<?%

12%34&%1M61% ?7<NO61% T%

Q*%(**>%*U*)H.*%9:0/%+,%+*/+%7<?%(*+9,&@/%
LI'/%+:E@V%:G+,J:H):EE0%+*/H(A%W4*(#E,9%344/%

What if we can automatically correct networks on the fly?

 8

repairs. Furthermore, an interactive mode would allow
the application to ensure its state is consistent with that of
the network, as it can update its own state after choosing
one of several potential repairs for the policy-violating
update.

3 Design

At the core of NEAt is a verification and correction layer,
which ensures only updates conforming to the network
policies are sent onto the network. This layer receives
updates from one of two integration modes with the SDN
control infrastructure: pass-through and interactive.

3.1 Verification and Repair

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

NEAt’s verification and correction engines ensure the
network is always consistent with the defined policy. To
start, NEAt takes as input a policy graph (1), which
defines the network policies (e.g., reachability, segmen-
tation, waypointing) in the form of a directed graph.
Next, NEAt receives updates (e.g., flow modification
messages) from the SDN control infrastructure. With
each update (2), NEAt applies the change to a network
model, from which the ECs affected by the update are
computed. Using the policy graph, NEAt checks each af-
fected EC in the network model for policy violations us-
ing the verification engine (3). If the update does not in-
troduce any violations, it is sent onto the network. How-
ever, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to
the correction engine (4). The optimizer returns a set
of edges to be added or removed to the EC’s configura-
tion graph, which are then applied to the network model,
converted to OpenFlow rules, and sent to the forwarding
devices (5).

NEAt’s correction engine models the process of dis-
covering repairs as an optimization problem. Our explo-
ration of alternative approaches guided us toward this op-
timization problem-based solution for performance con-

siderations. For example, consider a brute force ap-
proach that discovers repairs for a given EC by testing all
possible permutations of edge additions and removals to
the EC’s configuration graph. A repair that requires only
adding edges, from 10 possible unused topology edges,
would need to explore 10! (˜3.6M) permutations. If the
violating property can be checked in just 1ms, each EC
could take up to 10 minutes to find a repair. Therefore
we use the formulation described in §5 for our repair dis-
covery process.

3.2 Interaction Modes

Figure 2: Interaction modes of NEAt.

With each repair, inconsistencies between application
state and network state will arise. To prevent applica-
tions from diverging from the underlying network state,
NEAt exposes two integration modes: pass-through and
interactive.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modifications to the controller applications. Both the
controller and applications are unaware of NEAt in this
mode. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes it to the verification and repair engines.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted change.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

3

Policies

Network
abstraction

?

repairs. Furthermore, an interactive mode would allow
the application to ensure its state is consistent with that of
the network, as it can update its own state after choosing
one of several potential repairs for the policy-violating
update.

3 Design

At the core of NEAt is a verification and correction layer,
which ensures only updates conforming to the network
policies are sent onto the network. This layer receives
updates from one of two integration modes with the SDN
control infrastructure: pass-through and interactive.

3.1 Verification and Repair

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

NEAt’s verification and correction engines ensure the
network is always consistent with the defined policy. To
start, NEAt takes as input a policy graph (1), which
defines the network policies (e.g., reachability, segmen-
tation, waypointing) in the form of a directed graph.
Next, NEAt receives updates (e.g., flow modification
messages) from the SDN control infrastructure. With
each update (2), NEAt applies the change to a network
model, from which the ECs affected by the update are
computed. Using the policy graph, NEAt checks each af-
fected EC in the network model for policy violations us-
ing the verification engine (3). If the update does not in-
troduce any violations, it is sent onto the network. How-
ever, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to
the correction engine (4). The optimizer returns a set
of edges to be added or removed to the EC’s configura-
tion graph, which are then applied to the network model,
converted to OpenFlow rules, and sent to the forwarding
devices (5).

NEAt’s correction engine models the process of dis-
covering repairs as an optimization problem. Our explo-
ration of alternative approaches guided us toward this op-
timization problem-based solution for performance con-

siderations. For example, consider a brute force ap-
proach that discovers repairs for a given EC by testing all
possible permutations of edge additions and removals to
the EC’s configuration graph. A repair that requires only
adding edges, from 10 possible unused topology edges,
would need to explore 10! (˜3.6M) permutations. If the
violating property can be checked in just 1ms, each EC
could take up to 10 minutes to find a repair. Therefore
we use the formulation described in §5 for our repair dis-
covery process.

3.2 Interaction Modes

Figure 2: Interaction modes of NEAt.

With each repair, inconsistencies between application
state and network state will arise. To prevent applica-
tions from diverging from the underlying network state,
NEAt exposes two integration modes: pass-through and
interactive.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modifications to the controller applications. Both the
controller and applications are unaware of NEAt in this
mode. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes it to the verification and repair engines.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted change.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

3

What if we can automatically correct networks on the fly?

 9

repairs. Furthermore, an interactive mode would allow
the application to ensure its state is consistent with that of
the network, as it can update its own state after choosing
one of several potential repairs for the policy-violating
update.

3 Design

At the core of NEAt is a verification and correction layer,
which ensures only updates conforming to the network
policies are sent onto the network. This layer receives
updates from one of two integration modes with the SDN
control infrastructure: pass-through and interactive.

3.1 Verification and Repair

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

NEAt’s verification and correction engines ensure the
network is always consistent with the defined policy. To
start, NEAt takes as input a policy graph (1), which
defines the network policies (e.g., reachability, segmen-
tation, waypointing) in the form of a directed graph.
Next, NEAt receives updates (e.g., flow modification
messages) from the SDN control infrastructure. With
each update (2), NEAt applies the change to a network
model, from which the ECs affected by the update are
computed. Using the policy graph, NEAt checks each af-
fected EC in the network model for policy violations us-
ing the verification engine (3). If the update does not in-
troduce any violations, it is sent onto the network. How-
ever, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to
the correction engine (4). The optimizer returns a set
of edges to be added or removed to the EC’s configura-
tion graph, which are then applied to the network model,
converted to OpenFlow rules, and sent to the forwarding
devices (5).

NEAt’s correction engine models the process of dis-
covering repairs as an optimization problem. Our explo-
ration of alternative approaches guided us toward this op-
timization problem-based solution for performance con-

siderations. For example, consider a brute force ap-
proach that discovers repairs for a given EC by testing all
possible permutations of edge additions and removals to
the EC’s configuration graph. A repair that requires only
adding edges, from 10 possible unused topology edges,
would need to explore 10! (˜3.6M) permutations. If the
violating property can be checked in just 1ms, each EC
could take up to 10 minutes to find a repair. Therefore
we use the formulation described in §5 for our repair dis-
covery process.

3.2 Interaction Modes

Figure 2: Interaction modes of NEAt.

With each repair, inconsistencies between application
state and network state will arise. To prevent applica-
tions from diverging from the underlying network state,
NEAt exposes two integration modes: pass-through and
interactive.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modifications to the controller applications. Both the
controller and applications are unaware of NEAt in this
mode. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes it to the verification and repair engines.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted change.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

3

Policies

Network
abstraction

?

repairs. Furthermore, an interactive mode would allow
the application to ensure its state is consistent with that of
the network, as it can update its own state after choosing
one of several potential repairs for the policy-violating
update.

3 Design

At the core of NEAt is a verification and correction layer,
which ensures only updates conforming to the network
policies are sent onto the network. This layer receives
updates from one of two integration modes with the SDN
control infrastructure: pass-through and interactive.

3.1 Verification and Repair

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

NEAt’s verification and correction engines ensure the
network is always consistent with the defined policy. To
start, NEAt takes as input a policy graph (1), which
defines the network policies (e.g., reachability, segmen-
tation, waypointing) in the form of a directed graph.
Next, NEAt receives updates (e.g., flow modification
messages) from the SDN control infrastructure. With
each update (2), NEAt applies the change to a network
model, from which the ECs affected by the update are
computed. Using the policy graph, NEAt checks each af-
fected EC in the network model for policy violations us-
ing the verification engine (3). If the update does not in-
troduce any violations, it is sent onto the network. How-
ever, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to
the correction engine (4). The optimizer returns a set
of edges to be added or removed to the EC’s configura-
tion graph, which are then applied to the network model,
converted to OpenFlow rules, and sent to the forwarding
devices (5).

NEAt’s correction engine models the process of dis-
covering repairs as an optimization problem. Our explo-
ration of alternative approaches guided us toward this op-
timization problem-based solution for performance con-

siderations. For example, consider a brute force ap-
proach that discovers repairs for a given EC by testing all
possible permutations of edge additions and removals to
the EC’s configuration graph. A repair that requires only
adding edges, from 10 possible unused topology edges,
would need to explore 10! (˜3.6M) permutations. If the
violating property can be checked in just 1ms, each EC
could take up to 10 minutes to find a repair. Therefore
we use the formulation described in §5 for our repair dis-
covery process.

3.2 Interaction Modes

Figure 2: Interaction modes of NEAt.

With each repair, inconsistencies between application
state and network state will arise. To prevent applica-
tions from diverging from the underlying network state,
NEAt exposes two integration modes: pass-through and
interactive.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modifications to the controller applications. Both the
controller and applications are unaware of NEAt in this
mode. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes it to the verification and repair engines.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted change.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

3

Auto-correct is not a new idea.

Network Error Auto-Correct

What if we can automatically correct networks on the fly?

 10

repairs. Furthermore, an interactive mode would allow
the application to ensure its state is consistent with that of
the network, as it can update its own state after choosing
one of several potential repairs for the policy-violating
update.

3 Design

At the core of NEAt is a verification and correction layer,
which ensures only updates conforming to the network
policies are sent onto the network. This layer receives
updates from one of two integration modes with the SDN
control infrastructure: pass-through and interactive.

3.1 Verification and Repair

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

NEAt’s verification and correction engines ensure the
network is always consistent with the defined policy. To
start, NEAt takes as input a policy graph (1), which
defines the network policies (e.g., reachability, segmen-
tation, waypointing) in the form of a directed graph.
Next, NEAt receives updates (e.g., flow modification
messages) from the SDN control infrastructure. With
each update (2), NEAt applies the change to a network
model, from which the ECs affected by the update are
computed. Using the policy graph, NEAt checks each af-
fected EC in the network model for policy violations us-
ing the verification engine (3). If the update does not in-
troduce any violations, it is sent onto the network. How-
ever, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to
the correction engine (4). The optimizer returns a set
of edges to be added or removed to the EC’s configura-
tion graph, which are then applied to the network model,
converted to OpenFlow rules, and sent to the forwarding
devices (5).

NEAt’s correction engine models the process of dis-
covering repairs as an optimization problem. Our explo-
ration of alternative approaches guided us toward this op-
timization problem-based solution for performance con-

siderations. For example, consider a brute force ap-
proach that discovers repairs for a given EC by testing all
possible permutations of edge additions and removals to
the EC’s configuration graph. A repair that requires only
adding edges, from 10 possible unused topology edges,
would need to explore 10! (˜3.6M) permutations. If the
violating property can be checked in just 1ms, each EC
could take up to 10 minutes to find a repair. Therefore
we use the formulation described in §5 for our repair dis-
covery process.

3.2 Interaction Modes

Figure 2: Interaction modes of NEAt.

With each repair, inconsistencies between application
state and network state will arise. To prevent applica-
tions from diverging from the underlying network state,
NEAt exposes two integration modes: pass-through and
interactive.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modifications to the controller applications. Both the
controller and applications are unaware of NEAt in this
mode. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes it to the verification and repair engines.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted change.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

3

Policies

Network
abstraction

NEAt

repairs. Furthermore, an interactive mode would allow
the application to ensure its state is consistent with that of
the network, as it can update its own state after choosing
one of several potential repairs for the policy-violating
update.

3 Design

At the core of NEAt is a verification and correction layer,
which ensures only updates conforming to the network
policies are sent onto the network. This layer receives
updates from one of two integration modes with the SDN
control infrastructure: pass-through and interactive.

3.1 Verification and Repair

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

NEAt’s verification and correction engines ensure the
network is always consistent with the defined policy. To
start, NEAt takes as input a policy graph (1), which
defines the network policies (e.g., reachability, segmen-
tation, waypointing) in the form of a directed graph.
Next, NEAt receives updates (e.g., flow modification
messages) from the SDN control infrastructure. With
each update (2), NEAt applies the change to a network
model, from which the ECs affected by the update are
computed. Using the policy graph, NEAt checks each af-
fected EC in the network model for policy violations us-
ing the verification engine (3). If the update does not in-
troduce any violations, it is sent onto the network. How-
ever, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to
the correction engine (4). The optimizer returns a set
of edges to be added or removed to the EC’s configura-
tion graph, which are then applied to the network model,
converted to OpenFlow rules, and sent to the forwarding
devices (5).

NEAt’s correction engine models the process of dis-
covering repairs as an optimization problem. Our explo-
ration of alternative approaches guided us toward this op-
timization problem-based solution for performance con-

siderations. For example, consider a brute force ap-
proach that discovers repairs for a given EC by testing all
possible permutations of edge additions and removals to
the EC’s configuration graph. A repair that requires only
adding edges, from 10 possible unused topology edges,
would need to explore 10! (˜3.6M) permutations. If the
violating property can be checked in just 1ms, each EC
could take up to 10 minutes to find a repair. Therefore
we use the formulation described in §5 for our repair dis-
covery process.

3.2 Interaction Modes

Figure 2: Interaction modes of NEAt.

With each repair, inconsistencies between application
state and network state will arise. To prevent applica-
tions from diverging from the underlying network state,
NEAt exposes two integration modes: pass-through and
interactive.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modifications to the controller applications. Both the
controller and applications are unaware of NEAt in this
mode. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes it to the verification and repair engines.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted change.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

3

Control plane

Data plane

Configuration

Network
behavior

Network Abstraction

Operating on the data plane
simplifies our work

• Diagnose problems as close as
possible to actual network behavior

• Data plane is a “narrower waist”
than configuration

Challenges

Goal: Improve upon a manual effort with transparency in
both performance and architecture.

Challenge 1: Repair speed

• Based on real-time verification technique
• Derive fixes via linear optimization, with min. changes
• Topology limitation & graph compression

Challenge 2: Zero/minimal architecture/application changes

• Minimal changes
• Pass-through mode
• Interactive mode

 11

Design of NEAt

 12

Controller

Policy

Stream of Updates

Corrected Updates

NEAt

Design of NEAt

 13

NEAt

Correction
Engine

Yes

Controller

No

Policy

Stream of Updates

Network
Events

Network Model

Verification
Engine

Application Mode

 14

Controller

NEAt

Stream of
Updates

App App

Suggested

Changes

Proposed
Updates

Interactive

Pass-
Through

Policy as Graphs

Graphs are neat

• Network state synthesis viewing the network as a whole.
• Graphs richer set of policies.

A policy graph is defined on a packet header pattern

• ip dst 10.0.1.0/24, port 443.

 15

A B(m,n)

Reachability m = 1

Bounded path length
(shortest path)

m =1
n = path_length

Multipath/Resillience m = k (k > 1)

Isolation m = 0

Policy

Policy as Graphs (Cont’d)

Service Chaining

 16

A B(1,)

D C(2,5)

E

(0,)

(1,)

S1

S2

S3

S4

S5

C

(1 ⁄5,)

(1 ⁄5,)

(1 ⁄5,)
(1 ⁄5,)

(1 ⁄5,)

Use policy graphs to express both qualitative and quantitative
reachability constraints

Load balancing
Policy

Repair Algorithm

Cast the problem as an optimization problem:

• Map forwarding graph to policy graph
• Minimize # of changes

 17

Network State

e

d

h

f i

m

l

g
a

b

p
n

jc

k

Policy Graph

c

k
j

Correction
Engine

Repair - Basic Reachability

Cast the problem as an optimization problem:

• Map forwarding graph to policy graph
• Minimize # of changes
• boolean variable xi, j, p, q:

- topology edge (i, j) policy edge (p, q)
- s.t., policy level reachability (p, q)

 18

Network State

e

d

h

f i

m

l

g
a

b

p
n

jc

k

Policy Graph

c

k
j

Correction
Engine

Repair - Generalized Reachability

 19

undirected graph that represents the physical topology of
the network.

Algorithm Overview When the verification engine
discovers a violated EC, the algorithm is executed. Its
goal is to repair the detected violations optimally, i.e.,
with the minimum number of changes to the original
configuration. Upon receiving the violated EC c to-
gether with its configuration graph `c, NEAt formulates
the problem as an optimization problem: we aim to add
or delete the minimum number of edges on `c so that the
modified `c complies with√c. √c is a subgraph of√ that
is relevant to EC c. Note that the added or deleted edges
are constrained within the topology graph T . We solve
the optimization problem using ILP.

Subsection §5.1 describes the repair algorithm for ba-
sic reachability policies, and subsection §5.2 enhances
the basic algorithm to cope with the entire set of policies
in §4. We complete the section with our repair algorithm
for forwarding loops (§5.3). Table 1 summarizes the key
notations used in this section and the next section §6.

Symbol Description

`c
The configuration graph for equivalence
class c.

√ The policy graph.
T The topology graph.
(i, j) The edge from node i to node j.
ri j The paths between node i and node j.
Cc

i The cluster of node i for equivalence class c.
ci The compressed node i for Cc

i .
E(a) The set of all edges in graph a.
N(E(a)) Number of all edges in graph a.

NBa(i)
The set of all neighbors of node i in
graph a.

Table 1: Key notations in problem formulation.

5.1 Repair Basic Reachability

After receiving a configuration graph `c that violates the
desired policies from the verification engine, the opti-
mizer determines the minimum number of edges that
needs to be added or deleted to ensure `c is consistent
with the policy graph √c using Integer Linear Program-
ming (ILP). We start with the basic case where √c con-
tains only reachability constraints.

Our integer program has a set of binary decision vari-
ables xi, j,p,q and xi, j where

xi, j,p,q,(i, j) 2 ET ,(p,q) 2 E√c (1)

xi, j,(i, j) 2 ET (2)

ET and E√c denote the set of all edges in T and √c re-
spectively. Variable xi, j,p,q defines the mapping between
a physical edge and a policy graph edge. It is 1 if a di-
rected edge (i, j) is mapped to policy edge (p,q) for the
current EC c, i.e., the flow from p to q will be forwarded
through edge (i, j) from i to j. Variable xi, j defines
whether or not edge (i, j) is used for forwarding this EC’s
traffic regardless of which flow uses it. Edge (i, j) in T
is selected if any flow (p,q) is forwarded through (i, j)
(Equation 3). Similarly, for the other direction (j, i), we
have Equation 4. No physical link can be selected to for-
ward traffic for the same EC on both directions (Equation
5) to avoid tight loops.

8(i, j) xi, j � Â
(p,q)2E√c

xi, j,p,q

N(E√)
(3)

8(j, i) x j,i � Â
(p,q)2E√c

x j,i,p,q

N(E√)
(4)

8(j, i) xi, j + x j,i  1 (5)

Equations 6-8 are the flow conservation equations for
policy level reachability (p,q).

8(p,q),8i 2 T :
(

Â j2NBT (i) xi, j,p,q = 1
Â j2NBT (i) x j,i,p,q = 0

if i = p (6)

(
Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 1

if i = q (7)

n
Â j2NBT (i)(xi, j,p,q � x j,i,p,q) = 0 otherwise (8)

The optimization objective is to minimize the number
of changes (additions and deletions) on the original con-
figuration graph `c.

min (Â
(i, j)/2E`c

xi, j � Â
(i, j)2E`c

xi, j) (9)

5.2 Generalizing the Algorithm

To support generalized reachability policies as discussed
in §4, we encode several additional constraints into the
ILP.
Isolation We introduce a special DROP node. If two
nodes are required to be isolated, i.e., the nodes are con-
nected with a (0,) edge in the policy graph, we change
the way flow conservation equations are defined. More
specifically, Equation 7 is changed to Equation 10. That
is, a flow from p to q should sink at DROP before reach-
ing q.

5

undirected graph that represents the physical topology of
the network.

Algorithm Overview When the verification engine
discovers a violated EC, the algorithm is executed. Its
goal is to repair the detected violations optimally, i.e.,
with the minimum number of changes to the original
configuration. Upon receiving the violated EC c to-
gether with its configuration graph `c, NEAt formulates
the problem as an optimization problem: we aim to add
or delete the minimum number of edges on `c so that the
modified `c complies with√c. √c is a subgraph of√ that
is relevant to EC c. Note that the added or deleted edges
are constrained within the topology graph T . We solve
the optimization problem using ILP.

Subsection §5.1 describes the repair algorithm for ba-
sic reachability policies, and subsection §5.2 enhances
the basic algorithm to cope with the entire set of policies
in §4. We complete the section with our repair algorithm
for forwarding loops (§5.3). Table 1 summarizes the key
notations used in this section and the next section §6.

Symbol Description

`c
The configuration graph for equivalence
class c.

√ The policy graph.
T The topology graph.
(i, j) The edge from node i to node j.
ri j The paths between node i and node j.
Cc

i The cluster of node i for equivalence class c.
ci The compressed node i for Cc

i .
E(a) The set of all edges in graph a.
N(E(a)) Number of all edges in graph a.

NBa(i)
The set of all neighbors of node i in
graph a.

Table 1: Key notations in problem formulation.

5.1 Repair Basic Reachability

After receiving a configuration graph `c that violates the
desired policies from the verification engine, the opti-
mizer determines the minimum number of edges that
needs to be added or deleted to ensure `c is consistent
with the policy graph √c using Integer Linear Program-
ming (ILP). We start with the basic case where √c con-
tains only reachability constraints.

Our integer program has a set of binary decision vari-
ables xi, j,p,q and xi, j where

xi, j,p,q,(i, j) 2 ET ,(p,q) 2 E√c (1)

xi, j,(i, j) 2 ET (2)

ET and E√c denote the set of all edges in T and √c re-
spectively. Variable xi, j,p,q defines the mapping between
a physical edge and a policy graph edge. It is 1 if a di-
rected edge (i, j) is mapped to policy edge (p,q) for the
current EC c, i.e., the flow from p to q will be forwarded
through edge (i, j) from i to j. Variable xi, j defines
whether or not edge (i, j) is used for forwarding this EC’s
traffic regardless of which flow uses it. Edge (i, j) in T
is selected if any flow (p,q) is forwarded through (i, j)
(Equation 3). Similarly, for the other direction (j, i), we
have Equation 4. No physical link can be selected to for-
ward traffic for the same EC on both directions (Equation
5) to avoid tight loops.

8(i, j) xi, j � Â
(p,q)2E√c

xi, j,p,q

N(E√)
(3)

8(j, i) x j,i � Â
(p,q)2E√c

x j,i,p,q

N(E√)
(4)

8(j, i) xi, j + x j,i  1 (5)

Equations 6-8 are the flow conservation equations for
policy level reachability (p,q).

8(p,q),8i 2 T :
(

Â j2NBT (i) xi, j,p,q = 1
Â j2NBT (i) x j,i,p,q = 0

if i = p (6)

(
Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 1

if i = q (7)

n
Â j2NBT (i)(xi, j,p,q � x j,i,p,q) = 0 otherwise (8)

The optimization objective is to minimize the number
of changes (additions and deletions) on the original con-
figuration graph `c.

min (Â
(i, j)/2E`c

xi, j � Â
(i, j)2E`c

xi, j) (9)

5.2 Generalizing the Algorithm

To support generalized reachability policies as discussed
in §4, we encode several additional constraints into the
ILP.
Isolation We introduce a special DROP node. If two
nodes are required to be isolated, i.e., the nodes are con-
nected with a (0,) edge in the policy graph, we change
the way flow conservation equations are defined. More
specifically, Equation 7 is changed to Equation 10. That
is, a flow from p to q should sink at DROP before reach-
ing q.

5

Basic Reachability

No tight loops

Flow conservation

•Isolation

•Service Chaining

•Bounded or Equal Path Length

•MultiPath (Resilience)

•Load Balancing

(
Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 1

if i = DROP (10)

Service Chaining With service chaining, or waypoint-
ing, we enhance our flow conservation equations with
Equation 11. This extends it beyond individual reacha-
bility requirements in the policy, and takes into account
dependencies between policy edges. The resulting map-
ping is guaranteed to satisfy chaining of reachability re-
quirements. For instance, if a policy node i is required to
reach q through p, because of this equation, i cannot be
mapped to the path segment (p,q). Otherwise, p might
be skipped on the path from i to q.
(

Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 0

if i 2√c and (9ri,por 9rq,i)

(11)
Bounded or Equal Path Length A special case is short-
est path policy, where the bounded length is the length of
the shortest physical path. If a path length bound n is
specified for a policy edge (p,q), then a new constraint
is added (Equation 12):

Â
(i, j)2ET

(xi, j,p,q + x j,i,p,q) n (12)

Multipath If at least m link-disjoint paths are required
for flow (p,q), then the flow conservation equations 6
and 7 are updated as Equation 13 and 14 respectively.

(
Â j2NBT (i) xi, j,p,q � m
Â j2NBT (i) x j,i,p,q = 0

if i = p (13)

(
Â j2NBT (i) xi, j,p,q � m
Â j2NBT (i) x j,i,p,q = 1

if i = q (14)

Load Balancing As discussed in §4, policy edges within
a load balancing policy are denoted with a decimal path
count. Correspondingly, in our optimization problem,
variables that map physical edges to policy edges are also
decimal values between zero and one, instead of binary
values. In addition to that change, We introduce a new
equation (Equation 15) to capture how flow distribution
propagates.

’
xi, j,p,q 6=0

xi, j,p,q = m (15)

For example, consider a physical topology shown in
Figure 6, where there are two layers of load balancing
between client C and servers S1� S5. If the policy in
Figure 5 is required, the solutions for variables (xi, j) are
shown in Figure 6.

Figure 6: Load Balancing Configuration.

5.3 Repairing Loops

The preceding repair algorithm operates on a loop-free
configuration graph. As such, we first check for and re-
move loops from each configuration graph before com-
pressing and repairing violations of any other property
type. Our objective for repairing loops is to minimize
change to the network, with a preference to affect few
equivalence classes as possible, as well as removed the
minimal number of rules. Thus, our algorithm will re-
move a forwarding rule matching packets destined to
10.0.0.1/32 over one for 10.0.0.0/8. Since loops are re-
paired first, and NEAt will later check reachability prop-
erties on each equivalence class, our loop repair algo-
rithm does not need to consider introducing permanent
reachability violations by removing rules.

Algorithm 1 Loop repair
procedure REMOVELOOP(`c, Q(c))

remove edges appearing in multiple loops
remove {(i, j) | (i, j) 2 qk ^ (i, j) 2 qm8k,m 2 Q(c)}
if N(Q(c)) = 0 then

return `c

for all qi 2 Q(c) do

while N(qi)> 0 do

remove edges forwarded out the destination
remove (i, j) if i is destination

while N(qi)> 0 do

remove most specific forwarding rule
remove (i, j) 2 qi with longest prefix

return `c

Algorithm 1 presents our loop repair algorithm. Q(c)
denotes the set of all loops appearing in a configuration
graph `c and N(Q(c)) the number of loops in `c. qi is a
subgraph of `c, and N(qi) = 0 when the subgraph con-
tains no loops. The algorithm begins by finding and re-
moving all intersecting edges across `c’s loops. For each
loop in `c that is not repaired by removing these edges,
next remove an edge (i, j) where i’s IP address is the des-

6

(
Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 1

if i = DROP (10)

Service Chaining With service chaining, or waypoint-
ing, we enhance our flow conservation equations with
Equation 11. This extends it beyond individual reacha-
bility requirements in the policy, and takes into account
dependencies between policy edges. The resulting map-
ping is guaranteed to satisfy chaining of reachability re-
quirements. For instance, if a policy node i is required to
reach q through p, because of this equation, i cannot be
mapped to the path segment (p,q). Otherwise, p might
be skipped on the path from i to q.
(

Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 0

if i 2√c and (9ri,por 9rq,i)

(11)
Bounded or Equal Path Length A special case is short-
est path policy, where the bounded length is the length of
the shortest physical path. If a path length bound n is
specified for a policy edge (p,q), then a new constraint
is added (Equation 12):

Â
(i, j)2ET

(xi, j,p,q + x j,i,p,q) n (12)

Multipath If at least m link-disjoint paths are required
for flow (p,q), then the flow conservation equations 6
and 7 are updated as Equation 13 and 14 respectively.

(
Â j2NBT (i) xi, j,p,q � m
Â j2NBT (i) x j,i,p,q = 0

if i = p (13)

(
Â j2NBT (i) xi, j,p,q � m
Â j2NBT (i) x j,i,p,q = 1

if i = q (14)

Load Balancing As discussed in §4, policy edges within
a load balancing policy are denoted with a decimal path
count. Correspondingly, in our optimization problem,
variables that map physical edges to policy edges are also
decimal values between zero and one, instead of binary
values. In addition to that change, We introduce a new
equation (Equation 15) to capture how flow distribution
propagates.

’
xi, j,p,q 6=0

xi, j,p,q = m (15)

For example, consider a physical topology shown in
Figure 6, where there are two layers of load balancing
between client C and servers S1� S5. If the policy in
Figure 5 is required, the solutions for variables (xi, j) are
shown in Figure 6.

Figure 6: Load Balancing Configuration.

5.3 Repairing Loops

The preceding repair algorithm operates on a loop-free
configuration graph. As such, we first check for and re-
move loops from each configuration graph before com-
pressing and repairing violations of any other property
type. Our objective for repairing loops is to minimize
change to the network, with a preference to affect few
equivalence classes as possible, as well as removed the
minimal number of rules. Thus, our algorithm will re-
move a forwarding rule matching packets destined to
10.0.0.1/32 over one for 10.0.0.0/8. Since loops are re-
paired first, and NEAt will later check reachability prop-
erties on each equivalence class, our loop repair algo-
rithm does not need to consider introducing permanent
reachability violations by removing rules.

Algorithm 1 Loop repair
procedure REMOVELOOP(`c, Q(c))

remove edges appearing in multiple loops
remove {(i, j) | (i, j) 2 qk ^ (i, j) 2 qm8k,m 2 Q(c)}
if N(Q(c)) = 0 then

return `c

for all qi 2 Q(c) do

while N(qi)> 0 do

remove edges forwarded out the destination
remove (i, j) if i is destination

while N(qi)> 0 do

remove most specific forwarding rule
remove (i, j) 2 qi with longest prefix

return `c

Algorithm 1 presents our loop repair algorithm. Q(c)
denotes the set of all loops appearing in a configuration
graph `c and N(Q(c)) the number of loops in `c. qi is a
subgraph of `c, and N(qi) = 0 when the subgraph con-
tains no loops. The algorithm begins by finding and re-
moving all intersecting edges across `c’s loops. For each
loop in `c that is not repaired by removing these edges,
next remove an edge (i, j) where i’s IP address is the des-

6

(
Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 1

if i = DROP (10)

Service Chaining With service chaining, or waypoint-
ing, we enhance our flow conservation equations with
Equation 11. This extends it beyond individual reacha-
bility requirements in the policy, and takes into account
dependencies between policy edges. The resulting map-
ping is guaranteed to satisfy chaining of reachability re-
quirements. For instance, if a policy node i is required to
reach q through p, because of this equation, i cannot be
mapped to the path segment (p,q). Otherwise, p might
be skipped on the path from i to q.
(

Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 0

if i 2√c and (9ri,por 9rq,i)

(11)
Bounded or Equal Path Length A special case is short-
est path policy, where the bounded length is the length of
the shortest physical path. If a path length bound n is
specified for a policy edge (p,q), then a new constraint
is added (Equation 12):

Â
(i, j)2ET

(xi, j,p,q + x j,i,p,q) n (12)

Multipath If at least m link-disjoint paths are required
for flow (p,q), then the flow conservation equations 6
and 7 are updated as Equation 13 and 14 respectively.

(
Â j2NBT (i) xi, j,p,q � m
Â j2NBT (i) x j,i,p,q = 0

if i = p (13)

(
Â j2NBT (i) xi, j,p,q � m
Â j2NBT (i) x j,i,p,q = 1

if i = q (14)

Load Balancing As discussed in §4, policy edges within
a load balancing policy are denoted with a decimal path
count. Correspondingly, in our optimization problem,
variables that map physical edges to policy edges are also
decimal values between zero and one, instead of binary
values. In addition to that change, We introduce a new
equation (Equation 15) to capture how flow distribution
propagates.

’
xi, j,p,q 6=0

xi, j,p,q = m (15)

For example, consider a physical topology shown in
Figure 6, where there are two layers of load balancing
between client C and servers S1� S5. If the policy in
Figure 5 is required, the solutions for variables (xi, j) are
shown in Figure 6.

Figure 6: Load Balancing Configuration.

5.3 Repairing Loops

The preceding repair algorithm operates on a loop-free
configuration graph. As such, we first check for and re-
move loops from each configuration graph before com-
pressing and repairing violations of any other property
type. Our objective for repairing loops is to minimize
change to the network, with a preference to affect few
equivalence classes as possible, as well as removed the
minimal number of rules. Thus, our algorithm will re-
move a forwarding rule matching packets destined to
10.0.0.1/32 over one for 10.0.0.0/8. Since loops are re-
paired first, and NEAt will later check reachability prop-
erties on each equivalence class, our loop repair algo-
rithm does not need to consider introducing permanent
reachability violations by removing rules.

Algorithm 1 Loop repair
procedure REMOVELOOP(`c, Q(c))

remove edges appearing in multiple loops
remove {(i, j) | (i, j) 2 qk ^ (i, j) 2 qm8k,m 2 Q(c)}
if N(Q(c)) = 0 then

return `c

for all qi 2 Q(c) do

while N(qi)> 0 do

remove edges forwarded out the destination
remove (i, j) if i is destination

while N(qi)> 0 do

remove most specific forwarding rule
remove (i, j) 2 qi with longest prefix

return `c

Algorithm 1 presents our loop repair algorithm. Q(c)
denotes the set of all loops appearing in a configuration
graph `c and N(Q(c)) the number of loops in `c. qi is a
subgraph of `c, and N(qi) = 0 when the subgraph con-
tains no loops. The algorithm begins by finding and re-
moving all intersecting edges across `c’s loops. For each
loop in `c that is not repaired by removing these edges,
next remove an edge (i, j) where i’s IP address is the des-

6

Algorithm Overview When the verification engine dis-
covers a violated EC, the algorithm is executed. Its goal
is to repair the detected violations optimally, i.e., with
the minimum number of changes to the original configu-
ration. NEAt formulates the problem as an optimization
problem: we aim to add or delete the minimum num-
ber of edges on `c so that the modified `c complies with
√c. √c is a subgraph of √ that is relevant to EC c. Note
that the added edges are constrained within the topology
graph T . We solve the optimization problem using ILP.

Subsection §5.1 describes the repair algorithm for ba-
sic reachability policies, and subsection §5.2 enhances
the basic algorithm to cope with the entire set of policies
in §4. We complete the section with our repair algorithm
for forwarding loops (§5.3). Table 1 summarizes the key
notations used in this section and the next section §6.

Symbol Description
`c The configuration graph for EC c.
√ The policy graph.
T The topology graph.
(i, j) The edge from node i to node j.
ri j The paths between node i and node j.
Cc

i The cluster of node i for equivalence class c.
ci The compressed node i for Cc

i .
Ea The set of all edges in graph a.
N(Ea) Number of all edges in graph a.
NBa(i) The set of neighbors of node i in graph a.

Table 1: Key notations in problem formulation.

5.1 Repair Basic Reachability

We start with the basic case where √c contains only
reachability constraints. Our integer program has a set
of binary decision variables xi, j,p,q and xi, j where

xi, j,p,q,(i, j) 2 ET ,(p,q) 2 E√c (1)

xi, j,(i, j) 2 ET (2)

ET and E√c denote the set of all edges in T and √c re-
spectively. Variable xi, j,p,q defines the mapping between
a physical edge and a policy graph edge. It is one if a
directed edge (i, j) is mapped to policy edge (p,q) for
the current EC c, i.e., the flow from p to q will be for-
warded through edge (i, j) from i to j. Variable xi, j de-
fines whether edge (i, j) is used for forwarding this EC’s
traffic regardless of which flow uses it. Edge (i, j) in T
is selected if any flow (p,q) is forwarded through (i, j)
(Equation 3). Similarly, for the other direction (j, i), we
have Equation 4. No physical link can be selected to for-
ward traffic for the same EC on both directions (Equation
5) to avoid loops.

8(i, j) xi, j � Â
(p,q)2E√c

xi, j,p,q

N(E√)
(3)

8(j, i) x j,i � Â
(p,q)2E√c

x j,i,p,q

N(E√)
(4)

8(j, i) xi, j + x j,i  1 (5)

Equations 6-8 are the flow conservation equations for
policy level reachability (p,q). 8(p,q),8i 2 T :(

Â j2NBT (i) xi, j,p,q = 1
Â j2NBT (i) x j,i,p,q = 0

if i = p (6)
(

Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 1

if i = q (7)
n

Â j2NBT (i)(xi, j,p,q � x j,i,p,q) = 0 otherwise (8)

The optimization objective is to minimize the number
of changes (additions and deletions) on the original con-
figuration graph `c.

min (Â
(i, j)/2E`c

xi, j � Â
(i, j)2E`c

xi, j) (9)

5.2 Generalizing the Algorithm

To support generalized reachability policies in §4, we
encode several additional constraints into the ILP.
Isolation We introduce a special DROP node. If two
nodes are required to be isolated, i.e., the nodes are con-
nected with a (0,⇤) edge in the policy graph, we change
the way flow conservation equations are defined. In par-
ticular, we replace Equation 7 with Equations 10 and 11
below in the flow conservation equations. That is, a flow
from p to q should sink at DROP before reaching q.(

Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 1

if i = DROP (10)
n

Â j2NBT (i) xi, j,p,q = 0 if i = q (11)

Service Chaining With service chaining, or waypoint-
ing, we enhance our flow conservation equations with
Equation 12. It extends the definition beyond individ-
ual reachability segments (policy graph edges), by taking
into account dependencies between policy edges. The
resulting mapping is guaranteed to satisfy chaining of
reachability requirements. For instance, if a policy node
i is required to reach q through p, because of this equa-
tion, node i in the configuration graph is not allowed to
carry flow from p to q. Without this equation, p might
be skipped on the path from i to q.(

Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q = 0

if i 2√c and (9ri,por 9rq,i)

(12)
Bounded or Equal Path Length/Shortest Path If a
path length bound n is specified for a policy edge (p,q),
then a new constraint is added (Equation 13):

Â
(i, j)2ET

(xi, j,p,q + x j,i,p,q) n (13)

Multipath If at least m link-disjoint paths are required
for flow (p,q), then the flow conservation equations 6
and 7 are updated as Equation 14 and 15 respectively.
Multipath requirements are enforced throughout the dis-
tance between two end nodes by Equation 8.(

Â j2NBT (i) xi, j,p,q � m
Â j2NBT (i) x j,i,p,q = 0

if i = p (14)
(

Â j2NBT (i) xi, j,p,q = 0
Â j2NBT (i) x j,i,p,q � m

if i = q (15)

Load Balancing As discussed in §4, policy edges within
a load balancing policy are denoted with a decimal path
count. Correspondingly, in our optimization problem,
variables that map physical edges to policy edges are also
decimal values between zero and one, instead of binary
values. In addition, we introduce a new equation (Equa-
tion 16) to capture how flow distribution propagates.

’
xi, j,p,q 6=0

xi, j,p,q = m (16)

For example, consider the network in Figure 6, where
there are two layers of load balancing between client C
and servers S1 S5. If the policy in Figure 5 is required,
the solutions for variables (xi, j) are shown in Figure 6.

Figure 6: Load Balancing Configuration.

5.3 Repairing Loops

The preceding repair algorithm operates on a loop-free
configuration graph. As such, we first check for and re-
move loops from each configuration graph before com-
pressing and repairing violations of any other property
type. Our objective for repairing loops is to minimize
change to the network, with a preference to affect few
equivalence classes as possible, as well as removed the
minimal number of rules. Thus, our algorithm will re-
move a forwarding rule matching packets destined to
10.0.0.1/32 over one for 10.0.0.0/8. Since loops are re-
paired first, and NEAt will later check reachability prop-
erties on each equivalence class, our loop repair algo-
rithm does not need to consider introducing permanent
reachability violations by removing rules.

Algorithm 1 presents our loop repair algorithm. Q(c)
denotes the set of all loops appearing in a configuration
graph `c and N(Q(c)) the number of loops in `c. qi is a

Algorithm 1 Loop repair
procedure REMOVELOOP(`c, Q(c))

remove edges appearing in multiple loops
remove {(i, j) | (i, j) 2 qk ^ (i, j) 2 qm8k,m 2 Q(c)}
if N(Q(c)) = 0 then

return `c

for all qi 2 Q(c) do

while N(qi)> 0 do

remove edges forwarded out the destination
remove (i, j) if i is destination

while N(qi)> 0 do

remove most specific forwarding rule
remove (i, j) 2 qi with longest prefix

return `c

subgraph of `c, and N(qi) = 0 when the subgraph con-
tains no loops. The algorithm begins by finding and re-
moving all intersecting edges across `c’s loops. For each
loop in `c that is not repaired by removing these edges,
next remove an edge (i, j) where i’s IP address is the des-
tination, if such an edge exists. While qi still has loops,
remove an edge in the loop which has the most specific
match rule (e.g., longest prefix). Each edge is mapped to
a specific forwarding rule at a particular switch when we
compute the equivalence classes.

Removal of a forwarding rule is accomplished by re-
place it with a drop rule, to prevent a coarser match
from introducing another loop. For example, if a rule
matching destination IP 10.0.0.1/32 is simply deleted
from a switch’s forwarding table, another rule match-
ing 10.0.0.1/31 on the same switch and forwarding to
the same next hop could prevent the loop from being re-
paired. To conserve switch memory during in response
repairs, NEAt checks all coarser drop rules to determine
if multiple rules can be aggregated together.

6 Optimizations

While conceptually straightforward, the repair algorithm
in section 5 does not scale to well. In the optimization
problem formulation, the number of variables for one EC
is approximately the product of the number of topology
links and the number of policy graph edges, which can
easily exceed 100k. In this section, we present two tech-
niques that dramatically optimize the repair speed.

6.1 Topology Limitation

This technique aims to “slice” away irrelevant or redun-
dant part of the network, and thus shrink the size of
the optimization problem. After getting a configuration
graph that violates some policies, before passing it to the
optimizer, we first remove disconnected components on

Flow sinks at DROP node

Correct waypoint order

path length <= n

of paths >= m

Flow distribution propagates

Repair - Loop Freedom

The preceding algorithm operates on a loop-free graph.

First check for and remove loops before repairing other type violations.

Objective: Minimize changes

• Remove the minimal # of rules.

• Affect few packets as possible.

- E.g. remove a rule matching 10.0.0.1/32 over one for 10.0.0.0/8.

 20

Correction
Engine

Missing anything?

Scalability Challenge and Solution
Scalability challenge

• # of variables ≈ |E(Gtopo)| × |E(Gpolicy)|
• Easily exceeds 100k

Solution: ?

 21

Network State

e

d

h

f i

m

l

g
a

b

p
n

jc

k

Policy Graph

c

k
j

A Typical Enterprise Network

 22
Source: http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Medium_Enterprise_Design_Profile/MEDP/chap5.html

Scalability Challenge and Solution

Scalability challenge

• # of variables ≈ |E(Gtopo)| × |E(Gpolicy)|
• Easily exceeds 100k

Solution

• Topology Limitation
• Graph Compression

- Key: Compressed graph == original graph
- Bisimulation Based Graph Compression

 23

Correction Engine

Optimizer

Compressor

w.r.t policy

Implementation & Evaluation Setup

Prototype implementation in Python

• Use Gurobi within optimization engine
• Pass-through mode: proxy
• Interactive mode: XML-RPC API

Datasets:

• Synthetic fat-tree configurations
• SDN applications
• 244-router enterprise network trace

 24

Application End-to-End Delay

Pox + Mininet

• Learning switch app (pass-through)
• Load balancing app (interactive)

 25

 0

 40

 80

 120

 160

 200

 240

 280

(16, 20, 96)

(54, 45, 324)

(128, 80, 768)

La
te

nc
y

(m
s)

Topology Size (#hosts, #switches, #links)

comp+limit
nocomp+limit
comp+nolimit

nocomp+nolimit

Enterprise Network Trace Study

244 routers, one million forwarding rules

Policy: loop freedom & reachability

Issues found and repaired:

• Loops caused by default route
• Load balancing shouldn’t be turned on

 26

Repair vs. Synthesis

Synthesizer (NetGen) as repair tool

 27

#TopoLinks NEAt NetGen NetGen-C

96 5.9ms 743.2ms 513.2ms

324 7.2ms 4404.0ms 1160.8ms

768 9.0ms 16337.7m
s

2056.3ms

NEAt as synthesizer

#TopoLinks NEAt NetGen

96 921.7ms 7.1min

324 16.3s 381.7min

768 2.9min 173.2hrs

Isn’t that NEAt?

NEAt, a system analogous to a smartphone’s autocorrect.

• Casting the problem as an optimization problem
• Millisecond to second repair speed
• Generic policy support

Future work:

• Evolving & richer policies
• Different optimization goals
• Repair relevance study

 28

 29

Graph Compression

Key: Compressed graph == original graph

Major building block:

• Bisimulation Based Graph Compression*

 30
*Query preserving graph compression. SIGMOD 2012. W. Fan et al

w.r.t policy Correction Engine

Optimizer

Compressor

Core

HostBHostA

Firewall1 Firewall2 Firewall3

Edge1 Edge2 Edge3

•Customized policy-preserving compression

•Incremental Compression

•Repair compressed graphs

•Mapping back

•Proved Policy Perseverance

Graph Compression (Cont’d)

 31

Bisimulation Based Compression Algorithm 2
presents the compression algorithm on the given graphs
`c, √c and T . We compute bisimulation relation on `c
using the algorithms presented in [9] and then compress
the graphs based on the bisimularity. However, unlike
`c and √c, T is not a directed graph, and thus the
original algorithm is not applicable. To compute T cp,
we first compress the parts in T that overlap with `c
according to the undirected version of `cp

c . Then we
draw edges between the non-overlapping parts and
the compressed parts with their original edges in T .
The time complexity of the compression algorithm is
O(|E|log|V |). Figure 7(b) shows the compression result
on graph `c. Firewall2 and Firewal3 are bisimular
and are compressed to a new clustering named FW2.
Firewall1 stays by itself as FW1. √c is compressed in a
similar way.

Algorithm 2 Graph pattern preserving compression
procedure CLUSTERING(`c, √c, T)

compute the maximum bisimulation relation BR of `c
compute the clusters clusters = V/BR
collapse the nodes in the each cluster 2 clusters
compute compressed √c, `cp

c , T cp

return √c, `cp
c , T cp

We evaluate the compression algorithm on a simulated
fattree topology and a large enterprise network. We de-
notes the compression rate rc as the ratio of the number
of the remaining nodes in `cp

c to the number of the nodes
in the original graph `c. Table 2 shows the compression
results. From the result we can conclude that the com-
pression algorithm could result in a much smaller amount
of nodes for large-scale networks.

Topology 1� rc
Fattree (6750 hosts, 1125 switches) 99.38%
Enterprise (236 routers) 88.98%

Table 2: Compression results.

Incremental Compression Further leveraging the in-
cremental compression algorithm from [10], we incre-
mentally maintain the compressed configuration graphs.
In response to changes to the original graphs, the incre-
mental algorithm computes the new compressed graph
using the changes and the compressed graph as input, in-
dependent of the original graph. That is there is no need
to decompress the graph to propagate the changes.

Repair Compressed Graphs With the compression
module in place, when a violation is detected, the graphs
are compressed first, then passed to the optimizer. Note
that one compressed topology graph edge may represent

a collection of original topology graph edges. This works
fine with single-path reachability type of policies, such as
reachability, isolation, service chaining. However, it will
break equation 13 and 14 for link-disjoint multipath pol-
icy. Our solution is to label predecessors of a multipath
policy destination (E.g., q for policy edge (p,q)) node
differently, such that they are not compressed into one
cluster. In addition, the compressed topology graph is
modeled as a weight graph, where the weight on each
edge is the number of original edges the compressed
edge represents. Multipath policy constraint Equation 13
is modified accordingly as Equation 16, where as Equa-
tion 14 remains the same because there’s never multiple
edges pointing to the destination node q.

(
Â j2NBT cp (i)(xi, j,p,q ⇤weighti, j)>= m
Â j2NBT cp (i) x j,i,p,q = 0

if i = p

(16)

Map Back The last step is to map the result back to
the original graphs. The optimization result is a set
of changes (added or deleted edges) on the compressed
graphs. To map back to the original configuration graph,
a changed edge (ci,c j) could become a set of changed
edges between the cluster Cc

i and cluster Cc
j . If an edge

(ci,c j) is supposed to be added to the compressed config-
uration graph, then on the original configuration graph,
for every node i in the source cluster Cc

i , there should be
an edge added from i to one of its neighbor node j that
is in the target cluster Cc

j . By the definition of bisimula-
tion, such a node j always exists. On the other hand, if
an edge (ci,c j) should be removed from the compressed
configuration graph, then all the edges between the two
clusters should be removed on the original graph.

Afterwards, those computed changes will be translated
into forwarding instructions, and sent to the network de-
vices.

Policy Perseverance At the end, we prove that the
compression algorithm preserves the equivalence be-
tween the compressed graph Gc and the original graph
G with respect to the scope of policies in section 4. The
equivalence is proved in [10] for graph pattern queries.
A graph pattern query is effectively asserting single-path
type reachability and bounded path length. So here we
only need to prove that the conclusion also holds for mul-
tipath policies.

Theorem 1. (Multipath Equivalence): A multipath pol-
icy for a flow (p,q) holds on G iff the policy also holds
for (p,q) on Gc.

Proof. Consider a multipath policy that requires at least
m path for flow (p,q). Trivially, if a flow (p,q) satisfies

8

Optimization Engine

Optimizer

Compressor

Correction Engine

Optimizer

Compressor

Topology Compression Ratio

Fattree (6750 hosts, 1125 switches) 99.38%

Enterprise (236 routers) 88.98%

Modified mutipath constraint

Backup: Network Model

Model packet space as a set of Equivalence Classes

Equivalence class (EC): Packets experiencing the same
forwarding actions throughout the network.

Model forwarding behavior of each EC as a directed graph

 32

Correction
Engine

Equiv classes
Fwd’ing rules

0.0.0.0/1 64.0.0.0/3

Insights Behind NEAt

Preventing errors at run-time

• Allow arbitrary SDN applications to run on top
• Not restricted to any programming language
• Influence updates, rather than synthesize from scratch

Graphs are neat

• Networks are graphs
• Model network forwarding behaviors as directed graphs
• Represent operator intents as a policy graph

Discovering repairs

• Equivalent to modifying network state graph so that
there exists a mapping between it and the policy graph

 33

FW SH1

H2

 34

Policy

X

X

NEAt
Network Model

Veri�cation
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Data plane

Control planeControl plane

Data plane

Configuration

Network
behavior

Approach: Data plane verification & repair

 35

Configuration Data-plane

Prediction is difficult:
•Various configuration
languages
•Dynamic distributed
protocols

Closer to actual network
behavior

Unified analysis for multiple
control-plane protocols

Misses control-plane bugs Can catch control-plane bugs

Test prior to deployment Only detects bugs that are
present in the data plane

Operating on the data plane simplifies our work

• Diagnose problems as close as possible to actual network behavior
• Data plane is a “narrower waist” than configuration

