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Network Function Virtualization (NFV)

Network Functions: nodes on the data path between a source host and a destination host
Firewall, NIDS, IPS, Gateway, VPNs, Load Balancers, etc.

NFV is a network architecture concept: hardware => software
Based on virtualization techniques

Easier to manage/deploy, higher flexibility, higher scalability, easier to validate, ctc.

Construct service chains to provide specific services to meet different demands
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GPUs in Accelerating Network Functions

GPUs are proven to be a good candidate for
accelerating network functions

Router - PacketShader [Sigcomm’10]
SSL reverse proxy - SSLShader [NSDI’11]
NIDS - Kargus [CCS’12], MIDeA [CCS’11]

NDN Router - [NSDI’13]

Intel Xeon E5-2697 v4: 18 Cores
76.8 GB/s memory bandwidth
price: $2702

1.

2.

Massive Processing Units
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Network functions — large number of packets

GPU — thousands of cores for parallel processing

Massively Hiding Memory

Access Latency

Router

Virtualization
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Nvidia Titan X: 3840 Cores
550 GB/s memory bandwidth
price: $1999

Network functions — large number of memory accesses in processing packets

GPUs can effectively hide memory access latency with massive hardware threads and zero-overhead
thread scheduling (a GPU hardware support)




GPU-Accelerated Network Functions
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GPU-Accelerated Network Functions

Packet parsing, Compute/memory-
batching, etc. intensive tasks
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Why GPUs Have not Been Utilized in NFV Systems?

- Current GPU-based NFs - Exclusive Access 1o GPU
- The GPU is only accessed by one network function
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Why GPUs Have not Been Utilized in NFV Systems?

- Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

Inefficient

<’ Firewall[”| NIDS || IPsec || Router |7 >

Aho-CoraXick AES a
algorithiy

Bit vector
linear search




Current Way of GPU Virtualization is Inefficient

- Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

- GPU underutilization

Input: _
20 MQPS < | Firewall "l NIDS |-> IPsec || Router | >

Virtualization

Aho-Cora¥ick

GPU capability:

70 Mpps Idle




Current Way of GPU Virtualization is Inefficient

- Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

- GPU underutilization

- Higher latency

(1) Exclusive access Kernel
» GPU Timeline
(2) Temporal sharing Kernel

» GPU Timeline
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Spatial GPU Sharing

» GPU Timeline

(2) Temporal sharing n “ n Kernel

» GPU Timeline

(3) Spatial sharing

Spatial GPU sharing — multiple kernels run on the GPU simultaneously

Minimize the interference of kernel executions from other NFs (Latency)

Enhance utilization - Kernels from VMs can run on the GPU simultaneously (Throughput)

O m E = EEEE s



Hyper-Q for Spatial GPU Sharing

Hyper-Q for spatial GPU sharing

A technique that enables GPU kernels from the same GPU context to execute on the GPU
simultaneously

e

Firewall

Router

- Challenges

1. VMs have different GPU context => Cannot utilize Hyper-Q directly

2. Kernels utilizing Hyper-Q can access the entire memory space => Security issue

3. NFs are not aware of the existence of other NFs; An NF tries to maximize its resources would
influence other NFs => Demanding scheduling and resource allocation schemes



The Goal of G-NET

Easy to manage
/deploy Scalability

Network Function\Virtualization

Easy validation
* Spatial GPU Sharing ‘ * Security ‘
« Development ‘
x Scheduling ‘

¢ Resource Allocation ‘

| G-NET: NF-Hypervisor Co-Design |




G-NET: GPU Virtualization
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G-NET: System Workflow

Zero-copy principle

NF applied in system implementation NFn
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Achieve Predictable Performance

How to control the How to guarantee the
performance of an NF? Batch Size performance of a service chain?
Quantity of
Throughput ( )
NF ( \ GPU Kernel / VVOFK Firewall |>| NIDS |—»| IPsec || Router | >
Perf. atency P Performance Compute P
Resource

GPU

How to allocate GPU resources?
GPUs utilize fast thread switching to enhance hardware utilization
GPUs have massive hardware threads (#thread >> #core)

Unlike CPUs, a GPU thread is unable to be bond to a specific core



Achieve Predictable Performance

How to control the How to guarantee the
performance of an NF? Batch Size performance of a service chain?

Throughput
NF ( \ Firewall

Quantity of
/ Work
GPU Kernel
7 Lo ) (e )

Resource

Thread block

Streaming Multiprocessor (SM) as the basic
unit for resource allocation

NIDS IPsec Router | »

Our Approach

One thread block can only run on one SM;
A thread block would be scheduled to run on
an idle SM when there are available ones

A thread block is allocated with one SM when
Total #thread blocks <= Total #SMs




Service Chain Based Scheduling

How to optimize the performance of a service chain with limited compute resources

NFs have different processing tasks

> |Firewall| >| NIDS |~| IPsec [>| Router [ mp 3

#SM 0 0 0 0 EolrRess
Throughput (Mpps) 6 3 4 10

Service chain based scheduling and resource allocation
Locate the bottleneck NF (the NF with the lowest throughput T)

Allocate resources for all NFs in the service chain to achieve throughput T * (1+P) (0O<P<1)

g ‘Firewall ‘ @] "‘ IPsec "" Router ‘ id

Throughput improves
by P in each round

SMS mEmmm==-



Service Chain Based Scheduling
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IsoPointer for GPU Memory Isolation

NF1 NF2 NF,

*P_—> Memory Region

- Base Address (B)
- Memory Size (S)

Pointer access checking:
B <= P < B+S

|IsoPointer:
............... guarantee G PU
memory isolation




NF Development

NF NF> NF., - Repetitive development efforts
CPU-GPU pipeline

Manage CPU threads
Communicate with Manager
Packet I/O with Switch

Framework handles all
common operations




NF Development
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Common Context

Repetitive development efforts
CPU-GPU pipeline
Manage CPU threads
Communicate with Manager
Packet I/0O with Switch

Framework handles all
common operations

Abstraction to simplify NF
development



NF Development
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Post-
Processing

- pre_pkt_handler

called for each pkt

- memcpy_htod
- set_kernel_args
- memcpy_dtoh

called for each kernel

* post_pkt_handler

called for each pkt

CPU code (Router)
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Evaluation

Hardware
CPU: GPU:
Intel Xeon NVIDIA GTX
E5-2650 v4 TITAN X

Software

Virtualization: Docker 17.03.0-ce
NIC Driver & Library: DPDK 17.02.1
0OS: CentOS 7.3.1611, Linux kernel 3.8.0-30

Service Chains

2 NFs: IPsec || NIDS

Firewall| >| IPsec || NIDS
3 NFs:

IPsec || NIDS || Router

4 NFs: Firewall|>| IPsec || NIDS || Router

NIC:
Intel XL710
40Gbps



Throughput

- Comparison with Temporal GPU Sharing
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Scheduling

Service chain scheduling scheme comparison
G-NET: optimize the performance of the service chain
FairShare: Evenly partition compute resources among NFs
UncoShare: Each NF tries to maximize its resource allocation

Firewall + IPSec + NIDS + Router

B FairShare . UncoShare B G-NET
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Latency
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Conclusion

- G-NET:
- An NFV system that efficiently utilizes GPUs with spatial GPU sharing

- Service chain based scheduling and resource allocation scheme
Memory isolation with IsoPointer

- Abstraction that simplifies building GPU-accelerated NFs

Experimental Results  (Compare with temporal GPU sharing)

Enhances throughput by up to 70.8%
Reduces latency by up to 44.3%

G-NET
High-efficient platform for building GPU-based NFV systems




