G-NET: Effective GPU Sharing In NFV Systems

Kai Zhang?*, Bingsheng He", Jiayu Hu#, Zeke Wang",
Bei Hua#, Jiayi Meng#, Lishan Yang?*

*Fudan University
“National University of Singapore
#*University of Science and Technology of China

Network Function Virtualization (NFV)

Network Functions: nodes on the data path between a source host and a destination host
Firewall, NIDS, IPS, Gateway, VPNs, Load Balancers, etc.

NFV is a network architecture concept: hardware => software
Based on virtualization techniques

Easier to manage/deploy, higher flexibility, higher scalability, easier to validate, ctc.

Construct service chains to provide specific services to meet different demands

> frre ST -

Virtualization ' Virtualization

P ol 2 =

Virtualization

GPUs in Accelerating Network Functions

GPUs are proven to be a good candidate for
accelerating network functions

Router - PacketShader [Sigcomm’10]
SSL reverse proxy - SSLShader [NSDI’11]
NIDS - Kargus [CCS’12], MIDeA [CCS’11]

NDN Router - [NSDI’13]

Intel Xeon E5-2697 v4: 18 Cores
76.8 GB/s memory bandwidth
price: $2702

1.

2.

Massive Processing Units

Control ALU | ALU
| ALU | ALU

CcPU

Network functions — large number of packets

GPU — thousands of cores for parallel processing

Massively Hiding Memory

Access Latency

Router

Virtualization

| [l.l.l.ul.l

Nvidia Titan X: 3840 Cores
550 GB/s memory bandwidth
price: $1999

Network functions — large number of memory accesses in processing packets

GPUs can effectively hide memory access latency with massive hardware threads and zero-overhead
thread scheduling (a GPU hardware support)

GPU-Accelerated Network Functions

RX

7

.

Pre-
Processing

~\

J

7

.

GPU
Processing

\

J

e

.

Post-
Processing

~\

J

X

GPU-Accelerated Network Functions

Packet parsing, Compute/memory-
batching, etc. intensive tasks

RX

()
Pre-

Processing
. J

I—>

()

Post-
<
] Processing

. J

TX Construct/filter
packet, etc.

Parallel Processing

Why GPUs Have not Been Utilized in NFV Systems?

- Current GPU-based NFs - Exclusive Access 1o GPU
- The GPU is only accessed by one network function

- N
C D

Virtualization

Aho-Corasick

algorithm
\ 4
4)
GPU
o ,

Why GPUs Have not Been Utilized in NFV Systems?

- Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

Inefficient

<’ Firewall[”| NIDS || IPsec || Router |7 >

Aho-CoraXick AES a
algorithiy

Bit vector
linear search

Current Way of GPU Virtualization is Inefficient

- Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

- GPU underutilization

Input: _
20 MQPS < | Firewall "l NIDS |-> IPsec || Router | >

Virtualization

Aho-Cora¥ick

GPU capability:

70 Mpps Idle

Current Way of GPU Virtualization is Inefficient

- Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

- GPU underutilization

- Higher latency

(1) Exclusive access Kernel
» GPU Timeline
(2) Temporal sharing Kernel

» GPU Timeline

- O I O O O O g,

Spatial GPU Sharing

» GPU Timeline

(2) Temporal sharing n “ n Kernel

» GPU Timeline

(3) Spatial sharing

Spatial GPU sharing — multiple kernels run on the GPU simultaneously

Minimize the interference of kernel executions from other NFs (Latency)

Enhance utilization - Kernels from VMs can run on the GPU simultaneously (Throughput)

O m E = EEEE s

Hyper-Q for Spatial GPU Sharing

Hyper-Q for spatial GPU sharing

A technique that enables GPU kernels from the same GPU context to execute on the GPU
simultaneously

e

Firewall

Router

- Challenges

1. VMs have different GPU context => Cannot utilize Hyper-Q directly

2. Kernels utilizing Hyper-Q can access the entire memory space => Security issue

3. NFs are not aware of the existence of other NFs; An NF tries to maximize its resources would
influence other NFs => Demanding scheduling and resource allocation schemes

The Goal of G-NET

Easy to manage
/deploy Scalability

Network Function\Virtualization

Easy validation
* Spatial GPU Sharing ‘ * Security ‘
« Development ‘
x Scheduling ‘

¢ Resource Allocation ‘

| G-NET: NF-Hypervisor Co-Design |

G-NET: GPU Virtualization

Use APl remoting to (")
launch GPU operations

‘0
*
*
*
*
.0
IIIIIIII
’ VM
o S
*
g " g
*

Receive requests
A proxy creates a

........................... A perform GPU ops
common context Manager Send response
In the hypervisor for —

. N I EECEEE R LR EEEEE LR EEEELEEEEE o Common Context
spatial GPU sharing

Hypervisor

GPU

G-NET: System Workflow

Zero-copy principle

NF applied in system implementation NFn

f

NIC

—

Hv

Manager

r

GPU

VMs

Hypervisor

Achieve Predictable Performance

How to control the How to guarantee the
performance of an NF? Batch Size performance of a service chain?
Quantity of
Throughput ()
NF (\ GPU Kernel / VVOFK Firewall |>| NIDS |—»| IPsec || Router | >
Perf. atency P Performance Compute P
Resource

GPU

How to allocate GPU resources?
GPUs utilize fast thread switching to enhance hardware utilization
GPUs have massive hardware threads (#thread >> #core)

Unlike CPUs, a GPU thread is unable to be bond to a specific core

Achieve Predictable Performance

How to control the How to guarantee the
performance of an NF? Batch Size performance of a service chain?

Throughput
NF (\ Firewall

Quantity of
/ Work
GPU Kernel
7 Lo) (e)

Resource

Thread block

Streaming Multiprocessor (SM) as the basic
unit for resource allocation

NIDS IPsec Router | »

Our Approach

One thread block can only run on one SM;
A thread block would be scheduled to run on
an idle SM when there are available ones

A thread block is allocated with one SM when
Total #thread blocks <= Total #SMs

Service Chain Based Scheduling

How to optimize the performance of a service chain with limited compute resources

NFs have different processing tasks

> |Firewall| >| NIDS |~| IPsec [>| Router [mp 3

#SM 0 0 0 0 EolrRess
Throughput (Mpps) 6 3 4 10

Service chain based scheduling and resource allocation
Locate the bottleneck NF (the NF with the lowest throughput T)

Allocate resources for all NFs in the service chain to achieve throughput T * (1+P) (0O<P<1)

g ‘Firewall ‘ @] "‘ IPsec "" Router ‘ id

Throughput improves
by P in each round

SMS mEmmm==-

Service Chain Based Scheduling

NF1 NF2 NFn
é) é) é)
s
g w
1
1
1
1
4 N . r)
> ‘
m".}
Traffic
Speed
Hypervisor
f f A 1 A y]
I o
NIC I
] 1] [] Streaming
] Multiprocessor

NF1:5 NF2:4 NF3:7

IsoPointer for GPU Memory Isolation

NF1 NF2 NF,

*P_—> Memory Region

- Base Address (B)
- Memory Size (S)

Pointer access checking:
B <= P < B+S

|IsoPointer:
............... guarantee G PU
memory isolation

NF Development

NF NF> NF., - Repetitive development efforts
CPU-GPU pipeline

Manage CPU threads
Communicate with Manager
Packet I/O with Switch

Framework handles all
common operations

NF Development

NF1

~)
NF Spec.

| Framework |

NF-

~)
NF Spec.

Abstraction

| Framework)

NF,

()
NF Spec.

Abstraction

| Famewor

NIC

oo X e X v §

Common Context

Repetitive development efforts
CPU-GPU pipeline
Manage CPU threads
Communicate with Manager
Packet I/0O with Switch

Framework handles all
common operations

Abstraction to simplify NF
development

NF Development

NF;

-

Implementation

~
NF Spec.

Abstraction

| Framework)

Pre-
Processing

[GPU]
Processing

Post-
Processing

- pre_pkt_handler

called for each pkt

- memcpy_htod
- set_kernel_args
- memcpy_dtoh

called for each kernel

* post_pkt_handler

called for each pkt

CPU code (Router)

1 ot wy bateh [

? wint(d = 1ob nuw;

] 1ot rounnt ¢ T CosT ip,
1 LnpPLreuinti? T> cv ip!
5 inpPLreuints t> nIst port:
q LspPlrewints _t= I _pert:
?]

3 vuld kerne_anit(voic) |

9 glnsla U el roathodrouter. eu™, “lvluukep™)
1] buily remting _able])

11 !

Significantly reduces
development efforts | =+

21 gl laUArgdlaccli-sdur ip)

22 qlnstal Argdiacchesdar port),

7 gTnctal Aeglaset->job nim);

’4 ginsral Arntaov_Lrakup_Tnslel

N]

26 vnid meazpy droh(hatc=) [

a7 gMeaIpyTod(zaten »hast_porr. Batch »fre port,
23 23tch »jcb nua * PORT SIZE !

29]

38 wvolid post pkt headler(Cacch, oot pht 2dx) (
3l phleeport « Catcheshost porlpht ide];
32 }

Core functions

Evaluation

Hardware
CPU: GPU:
Intel Xeon NVIDIA GTX
E5-2650 v4 TITAN X

Software

Virtualization: Docker 17.03.0-ce
NIC Driver & Library: DPDK 17.02.1
0OS: CentOS 7.3.1611, Linux kernel 3.8.0-30

Service Chains

2 NFs: IPsec || NIDS

Firewall| >| IPsec || NIDS
3 NFs:

IPsec || NIDS || Router

4 NFs: Firewall|>| IPsec || NIDS || Router

NIC:
Intel XL710
40Gbps

Throughput

- Comparison with Temporal GPU Sharing

1.5 1.5
up to 23.8% up to 25.9%
o5 1.25 1.25
N &
€3
ZE< 075] l 0.75
0.5 0.5
128 256 512 1024 1518 128 256 512 1024 1518
u Temporal Share Packet Size (Byte) Packet Size (Byte)
B G-NET (a) IPSec+NIDS (b) Firewall+IPSec+NIDS
10 to 70.8%
up to 21.5% up to 0
B85 1.25
N : More Resource
g = 1 Competition with
= O
o = four NFs
Z i~ 0.75

O
o

128 256 512 1024 1518 128 256 512 1024 1518

Packet Size (Byte) Packet Size (Byte)
(c) IPSec+NIDS+Router (d) Firewall+IPSec+NIDS+Router

Scheduling

Service chain scheduling scheme comparison
G-NET: optimize the performance of the service chain
FairShare: Evenly partition compute resources among NFs
UncoShare: Each NF tries to maximize its resource allocation

Firewall + IPSec + NIDS + Router

B FairShare . UncoShare B G-NET

—h

. 08

= C

2 0

%g 0.6 .

3 0 04 10.7% average improvement over FairShare

g 80.5% average improvement over UncoShare ‘
H-H-H-\ I B

0

128 512 1024 1518
Packet Size (Byte)

Latency

O NIDS

1 IPSec+NIDS Vv Firewall+IPSec+NIDS <& Firewall+IPSec+NIDS+Router

(L7777 (L7
LLULLUL L LY CLULUULLLLL Y,

([

o
(@

",
0 1,000 2,000

3,000

4,000 5,000 6,000 7,000

Round Trip Time (microsecond)

B G-NET

: Temporal GPU Sharing

1.5

1.25

50th: ~20%

0.75

Normalized Latency

0.5
Firewall+ Firewall+IPSec+

IPSec+NIDS NIDS+Router

IPSec+NIDS

th percentile laten

1.5
1.25

1 —
0.75 95th: 25% - 44%
. - B

Firewall+ Firewall+IPSec+
IPSec+NIDS NIDS+Router

(b) 95th percentile latency

IPSec+NIDS

Conclusion

- G-NET:
- An NFV system that efficiently utilizes GPUs with spatial GPU sharing

- Service chain based scheduling and resource allocation scheme
Memory isolation with IsoPointer

- Abstraction that simplifies building GPU-accelerated NFs

Experimental Results (Compare with temporal GPU sharing)

Enhances throughput by up to 70.8%
Reduces latency by up to 44.3%

G-NET
High-efficient platform for building GPU-based NFV systems

