
Elastic	Scaling	of	
Stateful	Network	Functions

Shinae	Woo*+, Justine	Sherry*,	Sangjin	Han*,
Sue	Moon+,	Sylvia	Ratnasamy*,	Scott	Shenker*

+ KAIST,	* UC	Berkeley

NSDI	2018

• NFV	promises	the	benefit	of	virtualization;	Elastic	scaling	is	
one	of	such	benefits.

• Elastic	scaling:	Adjusting	the	number	of	NF	instances	in	
response	to	varying	load.

• In	practice,	realizing	elastic	scaling	comes	at	a	significant	cost	
of	correctness	and	performance.

Elastic	Scaling	of	NFs

2

Packets
SDN	controller

Forwarding	rule

NF	controller

Adjust	#	of	instances

Instance	1 Instance	N.	

Requirements	of	Elastic	Scaling

• Correct	NF	operations
– Multiple	instances	work	like	a	single	instance,	no	matter	how	many	

and	where	they	are.

• High	performance
– High	throughput	(10s	– 100s	of	Mpps)
– Low	latency	(sub-millisecond)

• Scaling	events	should	not	compromise	above.

3

Stateful NFs	make	elastic	scaling	challenging.

Background:	NF	State	Types

YES: Partitionable NO:	Non-partitionable

4

• TCP	connection	state
• Per-flow	statistics

• Attack	detection	status	such	as	port	
scanner	and	password	guesser

Inst	1 Inst	2

P PPPPP

locally	accessed remotely	accessed

Can	state	be	distributed	in	a	way	that	no	remote	access	is	necessary?

Inst	1 Inst	2

P PPPPP

Remote	access	cost	is	expensive	State	locality	changes	when	scaling

Partitionable	State:	Scaling	Breaks	Correctness

5

1 2

P
PP

PPP

Scale	out

1 32

PP
P

PPP
L NF3	doesn’t	have	necessary	state:	

sharing/migration	is	a	must

Prior	NF	state	management	models
(or,	why	managing	NF	state is	so	challenging?)

6

Traditional	Model:	Local-only	

7

• NF	states	are	in	local	memory
L No	sharing	support					L Incorrect	behavior	when	scale-out

Packets

Local	
memory

.

Remote-Only	Model	

8

• All	state	management	is	offloaded	to	remote	storage

Packets

.

Remote	shared	
memory

Remote-Only	Sacrifices	Performance

9

0

0.2

0.4

0.6

0.8

1

NAT PRADS IDS

Re
la
tiv
e	
Th
ro
ug
hp

ut

local-only remote-only

1

10

100

1000

10000

NAT PRADS IDS
La
te
nc
y	
(u
s)

*	For	remote-only,	we	follow	the	algorithm	described	in	“Stateless	Network	Functions:	
Breaking	the	Tight	Coupling	of	State	and	Processing”,	NSDI	2017

L Losing	throughput L Inflating packet	latency

Local+Remote Model

10

• All	state	access	is	local
• Out-of-band	control	for	state	synchronization

Packets

Local	
memory

.

export,	import, merge	state
Synchronize	state

NF	controller

Stop-Synchronize-Resume:	NO	GOOD

• Centralized	controller	keeps	state	locality	and	consistency+
– Proactively	prepare	state	before	it	is	accessed

11+	SplitMerge[NSDI	2013],	OpenNF[SIGCOMM	2015]

P PPPPP Synchronize

P
P
P P

P PPP PPP P

P
P
P

Forwarding	

Local+Remote Trades	Performance	for	Correctness

12

0

5

10

15

20

0

200

400

600

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6 Th

ro
ug
pu

t	(
Kp

ps
)

La
te
nc
y	
(m

s)

Time(s)

xput	(NF1) xput	(NF2) 99-%	latency 50-%	latency

* “OpenNF:	Enabling	Innovation	in	Network	Function	Control”,	SIGCOMM	2014

OpenNF*,	PRADS	(monitoring)
10kpps,	1500	flows	context	migration	from	NF1	to	NF2

L 100s	of	ms median	latencies

System	pause	

Summary	on	State	Management	Model

13

Normal Operation Scaling Operation

Local-only L No	scaling

Remote-only L Low	performance J No disruption

Local	+	Remote J Little	overhead L System-wide	pause

Normal Operation Scaling Operation

Local-only L No	scaling

Remote-only L Low	performance J No disruption

Local	+	Remote J Little	overhead L System-wide	pause

Distributed
Shared	Space J Little	overhead JMinimal disruption

Normal Operation
(Without	scaling-out) Scaling-out

PPP
PP

Load	Balancer
(Switch	/	SDN	Controller)

.

S6:	A	Framework	to	Build	Scalable	NFs

14

Distributed	Shared	Space

Locally	distributed à Minimal	performance	overhead

à State	sharing

à No	system-wide	pausing	
during	scaling	events

Any	NF	can	access	to	any	state

S6	Scales	Elastically	and	Gracefully

15

0
200
400
600
800

0
20
40
60
80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Th
ro
ug
pu

t	(
Kp

ps
)

La
te
nc
y	
(m

s)

Time(s)

0
5
10
15
20

0

200

400

600

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

Th
ro
ug
pu

t	(
Kp

ps
)

La
te
nc
y	
(m

s)

Time(s)

local+remote
(OpenNF*)

Distributed Shared
(S6)

10kpps,	1.5k	flows

* “OpenNF:	Enabling	Innovation	in	Network	Function	Control”,	SIGCOMM	2014

700kpps,	8k	flows

Sub-millisecond	median	latency

Overall	throughput	keeps	stable

Even	with	more	extreme	scenarios,
1000x higher	workload	(Mpps),	1000x lower	median	latency

S6:	A	Framework	to	Build	Scalable	NFs

16

1. NF	State	Abstraction

2. Elastic	Scaling	

3. S6	Programming	models

4. Optimizations	for	minimizing	remote	access	costs

Object	for	NF	State	Abstraction

17

ü Integrity	protection	of	state

- Single	writer	vs.	Multiple	writer	

ü Optimization	per	object
- Performance	vs.	consistency:
Different	sweet	spot	per	object

Object	encapsulation enables	easy	state	management

Object
Data

Operations

Interfaces

18

Optimization	Strategies	for	NF	State

State	type?

Access	pattern?Local	access

Non-blocking	updates
Merging	local	replicas	Caching

Partitionable Non-partitionable

Read-heavy Write-heavy

*From	our	survey	on	8	popular	network	functions

Most	NF	state	variables	are	covered	by	these	strategies*	

19

Examples	of	Optimization	for	NF	state

class Counter {

private:

uint32_t counter;

public:

uint32_t int_and_get();

void inc(uint32_t x);

uint32_t get() const ;

};

: public MultiWriter {

untether;

stale;

non-blocking	update

return	from	cache	

function	shipping	for	updating	from	multiple	instances
c.f.,	SingleWriter

S6:	A	Framework	to	Build	Scalable	NFs

20

1. NF	State	Abstraction

2. Elastic	Scaling	

3. S6	Programming	models

4. Optimizations	for	minimizing	remote	access	costs

S6	Shared	Object	Space	Architecture

21

where(Key1)=A

.......
get(Key1)
.......

Instance	A Instance	B

Object
Space

Key	
Space

NF	app

Obj1

Hash(Key)={x|A,B}

create new object
or access existing object

Hash(Key)={x|A,B}

Elastic	Scaling	Requires	Space	Reorganizing

22

where(Key1)=A

.......
get(Key1)
.......

Instance	A Instance	B

Object
Space

Key	
Space

NF	app

Obj1

Hash(Key)={x|A,B}

Instance	C

Hash_v2(Key)={x|A,B,C}

Changing	locality	of	partitionable	state

New	hash	function	for	key	distribution

State	Migration	for	Locality

23

Instance	C

where(Key1)=A

Instance	A Instance	B

Object
Space

Key	
Space

NF	app

Obj1

.......
get(Key1)
.......

where(Key1)=C
local	access

Obj1migrationObj1

*	Key	ownership	is	also	transferred	for	new	hash

When	scaling-out,	does	bursty state	migration	
degrade	performance?

State	Migration	Happens	Gradually	Behind	

• Flow	state	doesn’t	need	to	be	migrated	at	once
– Packets	in	the	same	flow	come	in	bursts
– Long	inter-arrival	time	between	packet	chunks	in	the	same	flow

• Micro-threading:	Keep	processing	even	with	unavoidable	
blocking	remote	access

24

f1

f2

f3

f4

f5

request	flow1

request	flow2

request	flow5

request	flow4

request	flow3

f1

f1

f1

f2

f3

request	flow1

request	flow3

request	flow2

LWorst-case J Real	network	load	

S6:	A	Framework	to	Build	Scalable	NFs

25

1. NF	State	Abstraction

2. Elastic	Scaling	

3. S6	Programming	models

4. Optimizations	for	minimizing	remote	access	costs

More	details	in	the	paper

Implementation

• S6	Compiler
– Compiles	S6	C++	extension	into	plain	C++	code
– Generates	S6	object	wrappers	(stub,	skeleton)
– Uses	clang	3.6	library

• S6	Runtime
– Built	in	12K	lines	of	C++	code
– Uses	boost	co-routine	for	micro-threads

• Applications
– PRADS:	a	Passive	Real-time	Asset	Detection	System
– Snort:	Intrusion	Detection	System
– NAT

26

Applications

• PRADS
– a	Passive	Real-time	Asset	Detection	

System
– allows	to	access	real-time	network	

monitoring	results
• protocols,	services,	and	devices

27

State Size	(B) Update Access	Frequency

Flow 160 Exclusive Per-packet	RW

Statistics 208 Concurrent Per-packet	RW

Asset 112	+	64n Concurrent Rarely	R
Per-packet	W

Config 1.16Mi Exclusive Per-packet	R
Rarely W

Flow	
hashtable

40n Concurrent Per-packet	RW

Asset	
hashtable

32n Concurrent Per-packet	RW

• Snort
– Intrusion	Detection	System
– We	port	logic	to	detect	

malicious	packets

State Size	(B) Update Access	Frequency

Flow 160~32Ki Exclusive Per-packet	RW

Whitelist 12 +	28n Exclusive Per-packet	RW

Malicious 12	+	28n Concurrent Per-packet	RW

Config 1.43	Mi Exclusive Per-packet	R
Rarely W

Maclicious
hashtable

32n Concurrent Per-packet	RW

Whitelisth
ashtable

32n Concurrent Per-packet	RW

Evaluation

28

• Scaling	experiments
– Use	Amazon	EC2	instance	as	NF	instances	(Docket	container)
– C4.xlarge,	4	cores	@	2.90	GHz

• Workloads:	Synthetic	TCP	traffic	
– Empirical	flow	distribution	in	size	and	arrival	rate

S6	Performance	During	Normal	Phase

29

0

0.2

0.4

0.6

0.8

1

NAT PRADS IDS

Re
la
te
iv
e	
Th

ro
ug
hp

ut

local-only remote-only distributed/shared

1

10

100

1000

10000

NAT PRADS IDS
La
te
nc
y	
(u
s)

Keys	are	evenly	distributed	through	2	instances
à Half	of	the	first	state	accesses	are	remote

J S6	preserves	80	~	95%	
throughput	from	local-only

J S6	keeps	similar	median	
latency	from	local-only

(S6)

Space	Reorganization	Overhead	during	Scale-out

30

• Latency	distribution	of	scale-out
– Scale-out	from	1	to	2	instances	(1Mpps	à 0.5Mpps	*	2)

0.001

0.01

0.1

1

10

100

1000

256B 1KiB 4KiB 16KiB

La
te
nc
y	
(m

s)

Size	of	objects	to	migrate

16k Objects	migration/instance

control	channel	becomes	bottleneck

S6	shows	minimal	performance	overhead	when	scaling-out

sub-millisecond	median	latencies

Conclusion

S6:	A	framework	to	build	scalable	NFs
• Allows	NF	state	to	be	shared/distributed/migrated across	instances
• Achieves	high	performance	with:	

– State	abstractions	specifying	state	requirements
– When	scaling,	gradual	object	migration	and	space	reorganization

• Has	minimal	performance	impact	during	normal	operations
as	well	as	scaling	event

• https://github.com/NetSys/S6

31

