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NFV Builds on Resource Sharing

Classic approach NFV approach
Dedicated hardware Shared hardware

Individual functions Functions in software




Offering Performance Guarantees Is Challenging

* Performance depends on neighbors’ activity.

* Due to sharing of network, server, and processor resources.

Cluster Server Processor

/0O Controller

- - . . E . . , Shared Cache (LLC)

Memory Controller




Assumptions on Resource Sharing and Isolation

But share on-die uncore resources.

Cluster Server Processor

1 4 ,
Independent NFs do not

Traffic isolation through fabric and NIC QoS mechanismes. share the same core.



Does Resource Contention Matter?

Solo run Consolidated runs

Traffic

Generator

Target NF’s throughput T
Target NF’s latency L

How far off is min(T;) and max(L;) from Tg,;, and L¢,;,?



Does Resource Contention Matter?
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Significant degradation for most NFs.



Approaches to Offer Performance SLOs

Prediction (indirect)
* Contention-aware placement.

* Accurate prediction is hard.

* Optimistic = SLO violation.
* Conservative =2 inefficient.

* Algorithmically complex.

 No isolation with SLO violations.

* May lead to neighbor violations.

Isolation (direct)
* Neighbor-indep. placement.

* No need for prediction.
* Algorithmically simpler.

* |solation despite SLO violations.
* Never affects neighbors’ SLOs.

Enabler: emergence of hardware
resource isolation mechanisms.



ResQ: SLO Enforcement by Direct Isolation

1. Direct performance isolation

2. Performance SLO enforcement



Direct Performance Isolation




Enabler: Hardware Resource Isolation

Intel Cache Allocation Technology
(CAT) for LLC isolation:

* Classify cores/threads/VMs.
* Assign parts of LLC to classes.

Processor
/O Controller
Interconnect

Memory Controller

Is LLC isolation sufficient to ensure NF performance isolation?
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LLC Isolation Is Sufficient!

* Achieves a high level of isolation with small packets.

* But up to 15% degradation with large packets.
* Despite small-packet traffic being more resource intensive.

* Observed high memory utilization with large-packet traffic.
* But, in general, we expect NFs to generate low memory traffic.
* Also, NF LLC miss rates with large & small packets are comparable.

* Root cause: high 1/0O-related mem. traffic due to LLC misses.
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The Leaky DMA Problem

* NICs do DMA transfers to part of LLC.
* Enabled by Intel Data Direct I/O Technology (DDIO).
* By default, uses 10% of LLC to allocate buffers.

* Contention for DDIO LLC space.

* Large packets require 12x more space
than small packets.

* CAT does not apply to I/0.

Solution: limit # on-the-fly packets, e.g., buffer sizing.
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BEFORE

AFTER

Accuracy of ResQ’s Isolation Mechanism

Throughput Degradation

Latency Degradation
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Performance SLO Enforcement



ResQ SLOs

* Reserved SLOs: static allocation.
* Input: NF, expected config and traffic profile.
* Target: throughput, latency.

* On-demand SLOs: dynamic allocation.
* Input: NF.
* Target: latency.
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ResQ Admission Process

* Profile NFs.
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ResQ Optimal Scheduler

* MILP formulation for the optimal solution.
* Slow compared to greedy allocation.

* Run in the background (i.e., not in the admission path).
* Rearrange NFs if necessary.

* Practical for small clusters.
* Takes seconds to minutes.
* Larger clusters: divide into smaller ones with independent solvers.
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Resource Efficiency
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[1] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. Toward Predictable Performance in Software Packet-Processing Platforms. NSDI'12. 18



Conclusion

* ResQ achieves better accuracy & efficiency than prior work.
* Despite using simple heuristics and algorithms.

* Enabled by direct performance isolation.
* Plenty of room for improvement with software mechanismes.

* Code available at https://github.com/netsys/resg
e Useful for general NFV experimentation.
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