
ResQ:	Enabling	SLOs	in
Network	Function	Virtualization

Amin	Tootoonchian*
Aurojit	Panda▸‡					Chang	Lan†					Melvin	Walls§

Katerina	Argyraki● Sylvia	Ratnasamy†					Scott	Shenker†‡

*Intel	Labs					†UC	Berkeley					‡ICSI					▸NYU					§Nefeli ●EPFL

Classic	approach
Dedicated	hardware
Individual	functions

NFV	approach
Shared	hardware

Functions	in	software

2

NFV	Builds	on	Resource	Sharing

•Performance	depends	on	neighbors’	activity.

•Due	to	sharing	of	network,	server,	and	processor	resources.

3

Offering	Performance	Guarantees	Is	Challenging

Cluster

Pr
oc

es
so

r Processor
DDR DDR

RAM RAM

PCI-E PCI-E

N
IC

N
IC

QPI

Server

Shared Cache (LLC)

Memory Controller

Processor
Interconnect I/O Controller

Core
Core

Core

Core
Core

Core

……
Processor

Cluster

Pr
oc

es
so

r Processor

DDR DDR

RAM RAM

PCI-E PCI-E

N
IC

N
IC

QPI

Server

Shared Cache (LLC)

Memory Controller

Processor
Interconnect I/O Controller

Core
Core

Core

Core
Core

Core

……

Processor

Assumptions	on	Resource	Sharing	and	Isolation

4

Traffic	isolation	through	fabric	and	NIC	QoS mechanisms.
Independent	NFs	do	not
share	the	same	core.

But	share	on-die	uncore resources.

Shared Cache (LLC)

Memory Controller

Processor
Interconnect I/O Controller

Core
Core

Core

Core
Core

Core

……

Does	Resource	Contention	Matter?

5

port1 core1

Traffic
Generator

port2 core2

port3 core3

portn coren

…

Solo run

Target NF’s throughput
Target NF’s latency

Tsolo

Lsolo

port1 core1

port2 core2

port3 core3

portn coren

…

port1 core1

port2 core2

port3 core3

portn coren
…

port1 core1

port2 core2

port3 core3

portn coren

…

…

Consolidated runs

T1

L1

T2

L2

Tm

Lm

How	far	off	is	min(𝑇&) and	max 𝐿& from	𝑇+,-, and	𝐿+,-,?

0
5

10
15
20
25
30
35
40
45
50

De
gr
ad
at
io
n	
(%

)

Throughput	Degradation

Small	packets

Large	packets

6

Does	Resource	Contention	Matter?

0

5

10

15

20

25

30

De
gr
ad
at
io
n	
(%

)

Latency	Degradation

Small	packets

Large	packets

Significant	degradation	for	most	NFs.

Prediction	(indirect)
• Contention-aware	placement.
• Accurate	prediction	is	hard.
• Optimistic	à SLO	violation.
• Conservative	à inefficient.

• Algorithmically	complex.
• No	isolation	with	SLO	violations.
• May	lead	to	neighbor	violations.

Isolation	(direct)
• Neighbor-indep.	placement.
• No	need	for	prediction.
• Algorithmically	simpler.
• Isolation	despite	SLO	violations.
• Never	affects	neighbors’	SLOs.

7

Approaches	to	Offer	Performance	SLOs

Enabler:	emergence	of	hardware	
resource	isolation	mechanisms.

1. Direct	performance	isolation

2. Performance	SLO	enforcement

8

ResQ:	SLO	Enforcement	by	Direct	Isolation

Direct	Performance	Isolation

9

Enabler:	Hardware	Resource	Isolation

10

Shared Cache (LLC)

Memory Controller

Processor
Interconnect I/O Controller

Core
Core

Core

Core
Core

Core

……

Intel	Cache	Allocation	Technology	
(CAT)	for	LLC	isolation:
• Classify	cores/threads/VMs.
• Assign	parts	of	LLC	to	classes.

Is	LLC	isolation	sufficient	to	ensure	NF	performance	isolation?

•Achieves	a	high	level	of	isolation	with	small	packets.

•But	up	to	15%	degradation with	large	packets.
• Despite	small-packet	traffic	being	more	resource	intensive.

•Observed	high	memory	utilization	with	large-packet	traffic.
• But,	in	general,	we	expect	NFs	to	generate	low	memory	traffic.
• Also,	NF	LLC	miss	rates	with	large	&	small	packets	are	comparable.

•Root	cause:	high	I/O-related	mem.	traffic	due	to	LLC	misses.

11

LLC	Isolation	Is	Not Sufficient!

•NICs	do	DMA	transfers	to	part	of	LLC.
• Enabled	by	Intel	Data	Direct	I/O	Technology	(DDIO).
• By	default,	uses	10%	of	LLC	to	allocate	buffers.

•Contention	for	DDIO	LLC	space.
• Large	packets	require	12x	more	space
than	small	packets.
• CAT	does	not	apply	to	I/O.

12

The	Leaky	DMA	Problem

Shared Cache (LLC)

Memory Controller

Processor
Interconnect I/O Controller

Core
Core

Core

Core
Core

Core

……

RX/TX

Co
nt
en

tio
n

Solution:	limit	#	on-the-fly	packets,	e.g.,	buffer	sizing.

0
5

10
15
20
25
30
35
40
45
50

De
gr
ad
at
io
n	
(%

)
Throughput	Degradation

Small	packets

Large	packets

0

5

10

15

20

25

30

De
gr
ad
at
io
n	
(%

)

Latency	Degradation

Small	packets

Large	packets

0
5

10
15
20
25
30
35
40
45
50

De
gr
ad
at
io
n	
(%

) Small	packets

Large	packets

0

5

10

15

20

25

30

De
gr
ad
at
io
n	
(%

) Small	packets

Large	packets

BE
FO

RE
AF

TE
R

Accuracy	of	ResQ’s Isolation	Mechanism

13

LLC	isolation	and	buffer	sizing	ensures	performance	isolation	
with	a	high	degree	of	accuracy	(<3%	error).

Performance	SLO	Enforcement

14

•Reserved	SLOs:	static	allocation.
• Input:	NF,	expected	config and	traffic	profile.
• Target:	throughput,	latency.

•On-demand	SLOs:	dynamic	allocation.
• Input:	NF.
• Target:	latency.

15

ResQ SLOs

•Profile	NFs.
• Construct	a	performance	model.
• Fast	and	scalable.

• Fast	greedy	allocation.
• Deny	admission	if	infeasible.
• Compute	#	of	instances.
• Compute	core	&	LLC	allocation	per	instance.

16

ResQ Admission	Process

•MILP	formulation	for	the	optimal	solution.
• Slow	compared	to	greedy	allocation.

• Run	in	the	background	(i.e.,	not	in	the	admission	path).
• Rearrange	NFs	if	necessary.

• Practical	for	small	clusters.
• Takes	seconds	to	minutes.
• Larger	clusters:	divide	into	smaller	ones	with	independent	solvers.

17

ResQ Optimal	Scheduler

Resource	Efficiency

18

22 22 22 2230 35 35 4838 45 44 128
0

20

40

60

80

100

120

140

ResQ	Optimal ResQ	Greedy Dynamic
(no	isolation)

Prediction	[1]
(no	isolation)

#	
Se
rv
er
s

Insensitive Combination Sensitive

Only	up	to	18.5%	worse	than	optimal
Cost	of	hard	partitioning	is	<3%

compared	to	greedy.

Highly	inefficient	(conservative	predictor)

[1]	Mihai	Dobrescu,	Katerina	Argyraki,	and	Sylvia	Ratnasamy. Toward	Predictable	Performance	in	Software	Packet-Processing	Platforms.	NSDI’12.

•ResQ achieves	better	accuracy	&	efficiency	than	prior	work.
• Despite	using	simple	heuristics	and	algorithms.

• Enabled	by	direct	performance	isolation.
• Plenty	of	room	for	improvement	with	software	mechanisms.

•Code	available	at	https://github.com/netsys/resq
• Useful	for	general	NFV	experimentation.

19

Conclusion

