ResQ: Enabling SLOs in
Network Function Virtualization

Amin Tootoonchian*

Aurojit Panda*¥ Changlant Melvin Walls§
Katerina Argyrakie Sylvia Ratnasamyt Scott Shenkert%

*Intel Labs TUC Berkeley #ICSI »NYU §Nefeli @EPFL

NFV Builds on Resource Sharing

Classic approach NFV approach
Dedicated hardware Shared hardware

Individual functions Functions in software

Offering Performance Guarantees Is Challenging

* Performance depends on neighbors’ activity.

* Due to sharing of network, server, and processor resources.

Cluster Server Processor

/0O Controller

- - . . E . . , Shared Cache (LLC)

Memory Controller

Assumptions on Resource Sharing and Isolation

But share on-die uncore resources.

Cluster Server Processor

1 4 ,
Independent NFs do not

Traffic isolation through fabric and NIC QoS mechanismes. share the same core.

Does Resource Contention Matter?

Solo run Consolidated runs

Traffic

Generator

Target NF’s throughput T
Target NF’s latency L

How far off is min(T;) and max(L;) from Tg,;, and L¢,;,?

Does Resource Contention Matter?

Throughput Degradation Latency Degradation
50 30
45 r M Small packets M Small packets
40 25
° 35 | M Large packets < M Large packets
= = 20
o 30 g
825 f B 15
®20 I ®
%" 15 & 10
10 e
: 5
0 ... _- —m ...

X5 \7 A\ C)\
KO o8 @ e W 1‘)&P a&\o’ e 3 e @N\ SO P

Significant degradation for most NFs.

Approaches to Offer Performance SLOs

Prediction (indirect)
* Contention-aware placement.

* Accurate prediction is hard.

* Optimistic = SLO violation.
* Conservative =2 inefficient.

* Algorithmically complex.

 No isolation with SLO violations.

* May lead to neighbor violations.

Isolation (direct)
* Neighbor-indep. placement.

* No need for prediction.
* Algorithmically simpler.

* |solation despite SLO violations.
* Never affects neighbors’ SLOs.

Enabler: emergence of hardware
resource isolation mechanisms.

ResQ: SLO Enforcement by Direct Isolation

1. Direct performance isolation

2. Performance SLO enforcement

Direct Performance Isolation

Enabler: Hardware Resource Isolation

Intel Cache Allocation Technology
(CAT) for LLC isolation:

* Classify cores/threads/VMs.
* Assign parts of LLC to classes.

Processor
/O Controller
Interconnect

Memory Controller

Is LLC isolation sufficient to ensure NF performance isolation?

10

LLC Isolation Is Sufficient!

* Achieves a high level of isolation with small packets.

* But up to 15% degradation with large packets.
* Despite small-packet traffic being more resource intensive.

* Observed high memory utilization with large-packet traffic.
* But, in general, we expect NFs to generate low memory traffic.
* Also, NF LLC miss rates with large & small packets are comparable.

* Root cause: high 1/0O-related mem. traffic due to LLC misses.

11

The Leaky DMA Problem

* NICs do DMA transfers to part of LLC.
* Enabled by Intel Data Direct I/O Technology (DDIO).
* By default, uses 10% of LLC to allocate buffers.

* Contention for DDIO LLC space.

* Large packets require 12x more space
than small packets.

* CAT does not apply to I/0.

Solution: limit # on-the-fly packets, e.g., buffer sizing.

12

BEFORE

AFTER

Accuracy of ResQ’s Isolation Mechanism

Throughput Degradation

Latency Degradation

50 r
45 r B Small packets M Small packets
g :g : M Large packets E\i M Large packets
530 | s’
®25 & 15
® 20 | &
g)o 15 g 10
10 | .l [l
5 B [° [
o 'm— LLC isolation and buffer S|zmg ensures performance isolation
C\)\.S ° ° o XS X2
S with a high degree of accuracy (<3% error). 537 e
50 r
45 25 |
40 M Small packets . M Small packets
X 35 X 20
= 20 M Large packets c M Large packets
0 2
§ 25 _r'r: 15
)
A 15 o
10 5
5 -
S 3 N c < X s 2 R \ \ W < \& PPN
O o8 (e e® k"N\N\aw\\\P g0 B A o e ¥ S S

Performance SLO Enforcement

ResQ SLOs

* Reserved SLOs: static allocation.
* Input: NF, expected config and traffic profile.
* Target: throughput, latency.

* On-demand SLOs: dynamic allocation.
* Input: NF.
* Target: latency.

15

ResQ Admission Process

* Profile NFs.

o O

A= BB s G = O
° P °

* Construct a performance model. % w
9] . Otgiﬂwall
* Fast and scalable. E 2 b
7 . " o
c a0 ..- V VEPC

2.25 6.75 1125 1575 20.25 2475 29.25 33.75

* Fast greedy allocation. | (L0 aocatn (18

. 1000 Firewall v .'
* Deny admission if infeasible. g | xS 1o &
» Compute # of instances. i o
* Compute core & LLC allocation per insta: “a

0.0 & W'l i W' ‘.‘ wmomr ™ -ﬁ.ﬂ JR
;'—' < - e
10 e
10 20 30 40 50 60 70 8 90 100

Input load (percent)

16

ResQ Optimal Scheduler

* MILP formulation for the optimal solution.
* Slow compared to greedy allocation.

* Run in the background (i.e., not in the admission path).
* Rearrange NFs if necessary.

* Practical for small clusters.
* Takes seconds to minutes.
* Larger clusters: divide into smaller ones with independent solvers.

17

Resource Efficiency

140 r
B [nsensitive ™ Combination M Sensitive
120 Highly inefficient (conservative predictor) « |
, [
100 rOnly up to 18.5% worse than optimal I
2 g0 L | Cost of hard partitioning is <3% |
GEJ compared to greedy. |
V)
- 60
40
20
0
ResQ Optimal ResQ Greedy Dynamic Prediction [1]
(no isolation) (no isolation)

[1] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. Toward Predictable Performance in Software Packet-Processing Platforms. NSDI'12. 18

Conclusion

* ResQ achieves better accuracy & efficiency than prior work.
* Despite using simple heuristics and algorithms.

* Enabled by direct performance isolation.
* Plenty of room for improvement with software mechanismes.

* Code available at https://github.com/netsys/resg
e Useful for general NFV experimentation.

19

