Distributed Network Monitoring and Debugging with
SwitchPointer
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* Increasingly larger scale
* Over 100k endpoints

* 10/40/100 GE
» Aggregate traffic > 100 Tbps
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SwitchPointer in a nutshell

Switch * Divides time into epochs
Packet — C . Maintains per-epoch pointer to all end-hosts
|I-_|-I| . Embeds linkID(m) and epochID ()
—— » Collect and monitor telemetry data
SE * Provides query service to filter telemetry data

« Uses pointers at switches
» Locates the data necessary for debugging

[ Analyzer
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SwitchPointer: Four technical challenges

* How to decide the right epoch size?
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Control plane

f Small bandwidth
FIe[e[e] [s[s[[+]¢] Small memory

A
Large munonnonED Inefficient
epoch size

] Time
Data plane




SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales



SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales

Epoch size = «

Level 1



SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales

Epoch size = «

Level 1 | o mS || o msS || o ms |
g /]
Y

o set of pointers




SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales

Epoch size = «

Level 2 | a2 ms oo | a2 ms |
g g )
Level1 |ams| ams]|| ams]| a set of pointers
. J
Y

o set of pointers




SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales

Epoch size = «

Level k ok ms

Level 2 | a2 ms = a2 ms |
g - )
Level1 |ams ]| ams || ams] a set of pointers
g J
Y

o set of pointers




SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms K=3

Level 3 [ 1000 ms

Level2 | 100 ms ]| 100 ms

Y

\\§
RVRI 10ms [ 10ms @ 10ms 10 set of pointers
A J
=g

10 set of pointers




SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms k=3

Level 3 [ 1000 ms

hd

\\§
R RN 10ms [ 10ms & 10ms_ 10 set of pointers
- J
g

10 set of pointers




SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms k=3

Level 3 Redundant information ]

Level 2

Level 1| D D - D
g /
Y

10 set of pointers



SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms k=3

Level 3 Redundant information ]

Level 2

OB io s [ i0ms B 0me.
g /
Y

Storage = N x o x K

10 set of pointers



SwitchPointer design

Our solution: Hierarchical data structure for pointers
a=10ms k=3

Level 3 v" 100k end-hosts : 345KB

=

Level 2

Storage = N x o x K

Level 1

g /
Y

10 set of pointers




SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms K=3

Level 3 1000 ms ]

Level2 | 100 ms ) 100 ms ]

Level 1 ) Fine grained view
G J
Y

10 set of pointers




SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms K=3

Level 3

1000 ms Coarse grained view

Level2 | 100 ms |+ | 100 ms ]

Level 1 ) Fine grained view
G J
Y

10 set of pointers




SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms K=3

Control plane

t% Push top-level pointers]
Level 3 1000 ms

Level 2 100 ms [ 100 ms ]
Level1  [10ms](10ms}.| 10ms
. /
Y

10 set of pointers



SwitchPointer design

Our solution: Hierarchical data structure for pointers
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SwitchPointer: Four technical challenges

* How to efficiently maintain pointers?



Minimal Perfect Hash Functions

» Maps distinct keys (dest IPs) to a set of integers
* No hash collisions
» 2.1 bits of storage per end-host

 Construction time is large
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Maintaining pointers in the hierarchical data structure

Minimal perfect hash function (M

PHF)
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[ Packet’s dstIP ]_,mindex_

« Single operation to find the index to set in all levels



SwitchPointer design

Maintaining updated pointers in the hierarchical data structure
Minimal perfect hash function (MPHF)

v X N4
(dstIP,] (dstlPy] - (dstIP,)

Lookup using MPHF
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Checks dstIP’s corresponding bit in the bit array
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« Switch embeds telemetry data (e.g., linkID, epochlD)

» Packet header space limitation
* Cherrypick ] for current deployments

« End-host collect and monitor telemetry data (E.g., PathDump | 1)

* Reconstructs the path
« Computes a range of epochs for pod switches

INT simplifies embedding and decoding telemetry data

More details in our paper
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https://github.com/PathDump/Applications




Problems SwitchPointer cannot debug

* |nstantaneous queue sizes

* Overlay loop detection

* |ncorrect packet modification
* Packet properties at a switch

https://github.com/PathDump/Applications
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SwitchPointer overhead (software implementation)

* Prototype
v Implemented on top of OVS-DPDK version
v" Build minimal perfect hash function using CMPH library

W OVS
@ SwitchPointer (#levels = 1)
@ SwitchPointer (#levels = 5)

No throughput loss for

average packet size = 256 Bytes

64 128 > 256
Packet size (Bytes)




Conclusion

» Achieves benefits of both end-host and in-network approaches

» Uses end-host resources to collect and monitor telemetry data

* Debugs a large class problems

« Ongoing work: Hardware implementation using P4 and NetFPGA



