Distributed Network Monitoring and Debugging with
SwitchPointer

Network monitoring and debugging is complex

Network monitoring and debugging is complex

Marple [siccomm17], PathDump [0sDr16], FlowRadar [NSDI'16],
EverFlow [siccomm15], Trumpet [SIGCOMM'16], Opensketch [NSDI'13]

Network monitoring and debugging is complex

Marple [siccomm17], PathDump [0sDr16], FlowRadar [NSDI'16],
EverFlow [siccomm15], Trumpet [SIGCOMM'16], Opensketch [NSDI'13]

* Increasingly larger scale
* Over 100k endpoints

* 10/40/100 GE
» Aggregate traffic > 100 Tbps

An example: Too many red lights

F,: Low priority
F,, F5: High priority

An example: Too many red lights

F,: Low priority
F,, F5: High priority

An example: Too many red lights

F, throughput

At S, At S,
1 1
0.8 0.8
306 0.6

O
(50.4 0.4
0.2 0.2
0) 0
. O 2 4 6 O 2 4 6
F,: Low priority msec msec

F,, F5: High priority

An example: Too many red lights

F, throughput

At S, At S,
1 1
0.8 0.8
306 0.6

O
(50.4 0.4
0.2 0.2
0) 0
. O 2 4 6 O 2 4 6
F,: Low priority msec msec

F,, F5: High priority

An example: Too many red lights

F,: Low priority
F,, F5: High priority

At S,

F, throughput
At S,

1
0.8
0.6

An example: Too many red lights

At S,

»*
S, AN

F,: Low priority
F,, F5: High priority

F, throughput

At S,
1
0.8
0.6
0.4
0.2
0
0 2 46
MmSecC

An example: Too many red lights

F,: Low priority
F,, F5: High priority

At S,

F, throughput

1
0.8
0.6
0.4
0.2

At S,

An example: Too many red lights

F, throughput

= At S, At S,
1 1
0.8 0.8
5 0.6 0.6
O
35 0.4 0.4
0.2 0.2
0 0
.y 0 2 4 6 (
F,: Low priority msec Fi.Foat Sy
F,, F5: High priority Fy,FsatS,

An example: Too many red lights

F, throughput

— At S, At S,
1 1
0.8 0.8
3 0.6 0.6
O
5 0.4 0.4
0.2 0.2
4 0
F.,F,at S, and f
F,: Low priority e e F,,F,atS,
F,, F.: High priority their packet priorities F:,Fi ats,

_ /J y

Existing Approaches

In-network techniques

$Eon

Existing Approaches

In-network techniques

Existing Approaches

In-network techniques

E 9

Existing Approaches

In-network techniques

+ ¥

High in-network visibility

Requires more data plane resources

E.g.: Marple, EverFlow, FlowRadar

Existing Approaches

In-network techniques End-host based techniques

High in-network visibility More resources & programmability

Requires more data plane resources Lose network visibility

E.g.: Marple, EverFlow, FlowRadar E.g.: PathDump, Trumpet

Existing Approaches

In-network techniques End-host based techniques

Requires more data plane resources Lose network visibility

E.g.: Marple, EverFlow, FlowRadar E.g.: PathDump, Trumpet

SwitchPointer
Integrates the best of two worlds

Insight: End-hosts collect and monitor telemetry data

SwitchPointer
Integrates the best of two worlds

Insight: End-hosts collect and monitor telemetry data

New insight: Switch stores the telemetry data

SwitchPointer
Integrates the best of two worlds

Insight: End-hosts collect and monitor telemetry data

New insight: Switch stores the tclcmctry data pointers to end-hosts

SwitchPointer
Integrates the best of two worlds

Insight: End-hosts collect and monitor telemetry data

New insight: Switch stores the tclcmctry data pointers to end-hosts

SwitchPointer
Integrates the best of two worlds

Insight: End-hosts collect and monitor telemetry data

New insight: Switch stores the tclcmctry data pointers to end-hosts

Packet

Switch

SwitchPointer in a nutshell

SwitchPointer in a nutshell

Switch * Divides time into epochs
Packet — C . Maintains per-epoch pointer to all end-hosts
— + Embeds linkID(®) and epochID (=)

SwitchPointer in a nutshell

Switch * Divides time into epochs
Packet — C * Maintains per-epoch pointer to all end-hosts
|I-_|-I| . Embeds linkID(®) and epochID (»)
» Collect and monitor telemetry data
End-host

2y
\

Provides query service to filter telemetry data

SwitchPointer in a nutshell

Switch * Divides time into epochs
Packet — C . Maintains per-epoch pointer to all end-hosts
|I-_|-I| . Embeds linkID(m) and epochID ()
—— » Collect and monitor telemetry data
SE * Provides query service to filter telemetry data

« Uses pointers at switches
» Locates the data necessary for debugging

[Analyzer

Let’s revisit “Too many red lights” problem

b ¢
L

,’

S

Let’s revisit “Too many red lights” problem

{9* - * -
= =
1

—

S; l S;

S

Let’s revisit “Too many red lights” problem

[9*,_*
—

—

81 — 82 l SS
z i[/‘]l S1132’83

h6 EpochlDs

Let’s revisit “Too many red lights” problem

h3he

h S1,95,94
6 EpochlDs

Let’s revisit “Too many red lights” problem

h3he

h S1,95,94
6 EpochlDs

Let’s revisit “Too many red lights” problem

h, h,
- (53 3le-_._Query/Response |
[9 . :\EI\%}‘- Tt
a Jri of leje] S TLI Iefe :
h2 h6 h2 q3h6 h3h6
J U | 5.5.8;

* EpochlDs

L e

Let’s revisit “Too many red lights” problem

F,, F, contend at S,

[E §: f%: --[F,, F; contend at S,
S

r —
—— of folo ole
N, “hg h, hgh T hghe

§P§1 132’83
* EpochlDs

L e

SwitchPointer: Four technical challenges

* How to decide the right epoch size?

SwitchPointer design

Data structure for pointers
Tradeoff between memory and bandwidth, and system efficiency

SwitchPointer design

Data structure for pointers
Tradeoff between memory and bandwidth, and system efficiency

Small Time
epoch size Data plane

SwitchPointer design

Data structure for pointers
Tradeoff between memory and bandwidth, and system efficiency

[Per-epoch
pointers g EEEOEEEOE
A :
[T Tel el T T T 1] Efficient

Small Time
epoch size Data plane

SwitchPointer design

Data structure for pointers
Tradeoff between memory and bandwidth, and system efficiency

Control plane

*

Large bandwidth

=G *

epoch size

Time

Data plane

SwitchPointer design

Data structure for pointers
Tradeoff between memory and bandwidth, and system efficiency

Control plane

f Small bandwidth
FIe[e[e] [s[s[[+]¢] Small memory

A
Large munonnonED Inefficient
epoch size

] Time
Data plane

SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales

SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales

Epoch size = «

Level 1

SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales

Epoch size = «

Level 1 | o mS || o msS || o ms |
g /]
Y

o set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales

Epoch size = «

Level 2 | a2 ms oo | a2 ms |
g g)
Level1 |ams| ams]|| ams]| a set of pointers
. J
Y

o set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
Each subsequent level has epochs with exponentially larger time scales

Epoch size = «

Level k ok ms

Level 2 | a2 ms = a2 ms |
g -)
Level1 |ams]| ams || ams] a set of pointers
g J
Y

o set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms K=3

Level 3 [1000 ms

Level2 | 100 ms]| 100 ms

Y

\\§
RVRI 10ms [10ms @ 10ms 10 set of pointers
A J
=g

10 set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms k=3

Level 3 [1000 ms

hd

\\§
R RN 10ms [10ms & 10ms_ 10 set of pointers
- J
g

10 set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms k=3

Level 3 Redundant information]

Level 2

Level 1| D D - D
g /
Y

10 set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms k=3

Level 3 Redundant information]

Level 2

OB io s [i0ms B 0me.
g /
Y

Storage = N x o x K

10 set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
a=10ms k=3

Level 3 v" 100k end-hosts : 345KB

=

Level 2

Storage = N x o x K

Level 1

g /
Y

10 set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms K=3

Level 3 1000 ms]

Level2 | 100 ms) 100 ms]

Level 1) Fine grained view
G J
Y

10 set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms K=3

Level 3

1000 ms Coarse grained view

Level2 | 100 ms |+ | 100 ms]

Level 1) Fine grained view
G J
Y

10 set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms K=3

Control plane

t% Push top-level pointers]
Level 3 1000 ms

Level 2 100 ms [100 ms]
Level1 [10ms](10ms}.| 10ms
. /
Y

10 set of pointers

SwitchPointer design

Our solution: Hierarchical data structure for pointers
=10 ms K=3

\ Control plane \

v" 100k end-hosts : 100 Kbps

Level 3 1000 ms

Level 2 r 100 ms [100 ms]

—

Level1 [10ms])(10ms] | 10ms

(G J
Y

10 set of pointers

SwitchPointer: Four technical challenges

* How to efficiently maintain pointers?

Minimal Perfect Hash Functions

» Maps distinct keys (dest IPs) to a set of integers
* No hash collisions
» 2.1 bits of storage per end-host

 Construction time is large

SwitchPointer design

Maintaining pointers in the hierarchical data structure

Minimal perfect hash function (M

PHF)

1

1

r

Of

1

Level k

Level 2

SwitchPointer design

Maintaining pointers in the hierarchical data structure

Minimal perfect hash function (M

PHF)

1

1

3
»

Update all levels

O(1|1| Level k

0lo[] Level 2

> -

[Packet’s dstIP]_,mindex_

« Single operation to find the index to set in all levels

SwitchPointer design

Maintaining updated pointers in the hierarchical data structure
Minimal perfect hash function (MPHF)

v X N4
(dstIP,] (dstlPy] - (dstIP,)

Lookup using MPHF

0[1]1]0]0]|1

Checks dstIP’s corresponding bit in the bit array

SwitchPointer: Four technical challenges

* How to efficiently embed telemetry data?

SwitchPointer design

Switch embeds telemetry data (e.g., linklD, epochID)

SwitchPointer design

Switch embeds telemetry data (e.g., linklD, epochID)

* INT: Packet header space limitation
* Cherrypick |] for current deployments

SwitchPointer design

Switch embeds telemetry data (e.g., linklD, epochID)

* INT: Packet header space limitation
* Cherrypick |] for current deployments

SwitchPointer design

Switch embeds telemetry data (e.g., linklD, epochID)

* INT: Packet header space limitation
« Cherrypick |] for current deployments

[2"d VLAN tag 1st VLAN tag]

SwitchPointer design

« Switch embeds telemetry data (e.g., linkID, epochlD)

» Packet header space limitation
* Cherrypick] for current deployments

* End-host collect and monitor telemetry data (E.g., PathDump |

1)

SwitchPointer design

« Switch embeds telemetry data (e.g., linkID, epochlD)

» Packet header space limitation
* Cherrypick] for current deployments

* End-host collect and monitor telemetry data (E.g., PathDump |

* Reconstructs the path
« Computes a range of epochs for pod switches

SwitchPointer design

« Switch embeds telemetry data (e.g., linkID, epochlD)

» Packet header space limitation
* Cherrypick] for current deployments

« End-host collect and monitor telemetry data (E.g., PathDump | 1)

* Reconstructs the path
« Computes a range of epochs for pod switches

More details in our paper

SwitchPointer design

« Switch embeds telemetry data (e.g., linkID, epochlD)

» Packet header space limitation
* Cherrypick] for current deployments

« End-host collect and monitor telemetry data (E.g., PathDump | 1)

* Reconstructs the path
« Computes a range of epochs for pod switches

INT simplifies embedding and decoding telemetry data

More details in our paper

SwitchPointer: Four technical challenges

* How to handle asynchronous clocks? Set bound on clock difference
between any pair of devices

SwitchPointer: Four technical challenges

* How to handle asynchronous clocks? Set bound on clock difference
between any pair of devices

More details in our paper

SwitchPointer - Coverage

SwitchPointer - Coverage

In-network techniques

TCP in-cast diagnosis

Heavy hitter

ECMP load imbalance diagnosis
Silent random packet drops
Traffic matrix

DDoS

SwitchPointer - Coverage

In-network techniques End-host based techniques
TCP in-cast diagnosis TCP out of order packet delivery
Heavy hitter * TCP non-monotonic
ECMP load imbalance diagnosis * Traffic bursts
Silent random packet drops * SYN flood attacks
Traffic matrix * New TCP connections

DDoS e TCP in-complete flows

SwitchPointer - Coverage

In-network techniques End-host based techniques
TCP in-cast diagnosis TCP out of order packet delivery
Heavy hitter * TCP non-monotonic
ECMP load imbalance diagnosis * Traffic bursts
Silent random packet drops * SYN flood attacks
Traffic matrix * New TCP connections
DDoS e TCP in-complete flows

==

Spatially and temporally correlated problems
E.g.: Too many red lights, Traffic cascades

SwitchPointer - Coverage

In-network techniques End-host based techniques
TCP in-cast diagnosis TCP out of order packet delivery
Heavy hitter * TCP non-monotonic
ECMP load imbalance diagnosis * Traffic bursts
Silent random packet drops * SYN flood attacks
Traffic matrix * New TCP connections
DDoS e TCP in-complete flows

==

Spatially and temporally correlated problems
E.g.: Too many red lights, Traffic cascades

https://github.com/PathDump/Applications

Problems SwitchPointer cannot debug

* |nstantaneous queue sizes

* Overlay loop detection

* |ncorrect packet modification
* Packet properties at a switch

https://github.com/PathDump/Applications

A more complex example: Traffic cascades

F,: High priority
F,: Middle priority
F.: Low priority

A more complex example: Traffic cascades

F,: High priority
F,: Middle priority
F.: Low priority msec

A more complex example: Traffic cascades

Fz[g Fg F3
S - S
1@ ° 0 10 20

F,: High priority
F,: Middle priority
F.: Low priority msec

A more complex example: Traffic cascades

Q.
0O V.
F . Hi h . . G @
1 High priority 0

F,: Middle priority 0 20 40
F.: Low priority msec

A more complex example: Traffic cascades

Q.
0O V.
F . Hi h . . G @
1 High priority 0

F,: Middle priority 0 20 40
F.: Low priority msec

A more complex example: Traffic cascades

LJ_g_EIE
F,: High priority

F,: Middle priority
F.: Low priority

A more complex example: Traffic cascades

— 1
FZEE EE §o.5 | [
I__ Q)

F,: High priority
F,: Middle priority
F.: Low priority

0 R
U 0 10 30

A more complex example: Traffic cascades

go05
© 0]
0 15 25
= " 1 e B
F2 F1R 8—0_5
= Q)

F,: High priority
F,: Middle priority
F.: Low priority

A more complex example: Traffic cascades

805
© 0
0 F1, F2 collision
1 —F2
*FM _ | ! \

[—— 0

F2

0 10 30

-

F,: High priority
F,: Middle priority
F.: Low priority

A more complex example: Traffic cascades

So05 | /
© 0]

0 15 25
2 1 —F2
Fo a
205 | l \
C © 0 I
U 0 10 30

F,: High priority
F,: Middle priority
F.: Low priority

A more complex example: Traffic cascades

So05 | / \
© 0]

0 15 25
2 1 —F2
Fo a
205 | l \ ’
C © 0
U 0 10 30

F,: High priority
F,: Middle priority
F.: Low priority

A more complex example: Traffic cascades

[

L o
jgd

F,: High priority
F,: Middle priority
F.: Low priority

So05 | / \
© 0]

0 15 25
1 —F2

(dp)]
205 | { \ ,
© 0

0 10 30
L,] —~F3
205
GRS i

0 20 45

A more complex example: Traffic cascades

805
© 0
0 15 25
o —F2
F2 *{ (%10.5 | [\ ,
I'_ 0
0 10 F2, F3 collision |
L,] —F3
805
F.ngh prlorlty S 0 -

F,: Middle priority 0 20 45
F.: Low priority

A more complex example: Traffic cascades

F,: High priority
F,: Middle priority
F.: Low priority

So05 | / \
© 0]

0 15 25
—F2

msSecC

A more complex example: Traffic cascades

F,: High priority
F,: Middle priority
F5: Low priority

A more complex example: Traffic cascades

Ss,9,
epochlDs

F,: High priority
F,: Middle priority
F5: Low priority

A more complex example: Traffic cascades

Ss,9,
epochlDs

F,: High priority
F,: Middle priority
F5: Low priority

A more complex example: Traffic cascades

S5,9;
>yochiDs, Query / Response |
- -

kS

h3he

F,: High priority
F,: Middle priority
F5: Low priority

A more complex example: Traffic cascades

-

F,: High priority
F,: Middle priority
F5: Low priority

N
F2 contends with F3

F1 contends with F2

A more complex example: Traffic cascades

N
F2 contends with F3

F1 contends with F2

F,: High priority
F,: Middle priority
F5: Low priority

A more complex example: Traffic cascades

N
F2 contends with F3

F1 contends with F2

F,: High priority
F,: Middle priority
F5: Low priority

SwitchPointer overhead (software implementation)

Prototype
v Implemented on top of OVS-DPDK version
v" Build minimal perfect hash function using CMPH library

240

S 8 W OVS

Za 6 71 @@ SwitchPointer (#levels = 1)
3 ‘2‘ ® SwitchPointer (#levels = 5)
=0

64 128 > 256
Packet size (Bytes)

SwitchPointer overhead (software implementation)

* Prototype
v Implemented on top of OVS-DPDK version
v" Build minimal perfect hash function using CMPH library

W OVS
@ SwitchPointer (#levels = 1)
@ SwitchPointer (#levels = 5)

No throughput loss for

average packet size = 256 Bytes

64 128 > 256
Packet size (Bytes)

Conclusion

» Achieves benefits of both end-host and in-network approaches

» Uses end-host resources to collect and monitor telemetry data

* Debugs a large class problems

« Ongoing work: Hardware implementation using P4 and NetFPGA

