Approximating Fair Queueing
on Reconfigurable Switches

Naveen Kr. Sharma, Ming Liu, Kishore Atreya, Arvind Krishnamurthy

UNIVERSITY of
WASHINGTON

PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE & ENGINEERING

& cAVIUM

Congestion Control Today

Primarily achieved using protocols (TCP, DCTCP, TIMELY, ..)

* End-hosts react to signals from the network.
* Network does not enforce fair sharing or isolation.

+ Requires minimal network support
+ Switches can operate at very high speeds
- End-host must cooperate to achieve fairness

- Leads to several inefficiencies and poor isolation

Fair Queueing : in-network enforcement

fair allocation and isolation at switches
* Provide an illusion that every flow has its own queue
* Proven to have perfect isolation and fairness

+ Simplifies congestion control at the end-host
+ Protects against misbehaving traffic

+ Enables bounded delay guarantees

However, challenging to realize in high-speed switches.

Fair Queueing without per-flow queues

Analysis and Simulation of a Fair Queueing Algorithm

Alan Demers
Srinivasan Keshavt
Scott Shenker
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

Abstract

We discuss gateway queueing algorithms and their
role in controlling congestion in datagram networks.
A fair queueing algorithm, based on an earlier
suggestion by Nagle, is proposed. Analysis and
simulations are used to compare this algorithm to

often ignored, makes queueing algorithms a crucial
component in effective congestion control.

Queueing algorithms can be thought of as allocat-
ing three nearly independent quantities: bandwidth
(which packets get transmitted), promptness (when
do those packets get transmitted), and buffer space

{ssvhinh nanlrate avra Adicnnrdad hu tha oatawavl

Fair Queueing without per-flow queues

* Simulates an ideal round-robin scheme where each active flow transmits

a single bit of data every round.

Flow 1

Flow 2

Flow 3

Flow 4

Round Number

Ideal fair-queueing

Flow
Counters

Track global round number

Sorted packet buffer

Store and update per-flow counters

“Simulated” fair-queueing (Demers et.al.)

Rest of the talk

Background: Reconfigurable Switches

Our approach: Approximate Fair Queueing

Optimized End-host Flow Control Protocol

Prototype Implementation

Evaluation

Reconfigurable Switches

* New class of programmable switches that allow customizable data-plane

Packet
Stream

* TCAM, SRAM for table lookups or matches
* ALUs for modifying headers and registers

* Stateful memory for counter and meters

>

Programmable

Parser

—)
|

Match + Action

] N N

* port
 ipv4.ttl = ipv4.ttl - 1

* counter[ipv4.dst _port]++

I [N]

Egress
Queues

JHUL

lookup(eth.dst _mac)

Realizing Fair Queueing on Reconfigurable Switches

1. Maintain a packet buffer
* Requirement: O(logN) insertion complexity
e Constraint: Limited operations per packet

2. Store counters
* Requirement: Per-flow mutable state
* Constraint: Limited switch memory

3. Access and current round number
* Requirement: Synchronize state across switch modules
e (Constraint: Limited cross-module communication

Our approach: Approximate Fair Queueing

Simulate a bit-by-bit round robin scheme with key approximations

Flow 1

Flow 2

Flow 3

Flow 4

Coarse round numbers

3 98765243210
Ll ||

Ideal fair-queueing

Limited # of FIFO queues with rotating
priorities to approximate a sorted buffer

—

Store approximate per-flow counters using
a variation of the count-min sketch

“Simulated” fair-queueing

Storing Approximate Flow Counters

e Variation of to track flow’s finish round number

C
hash,() % C

hash,() % C

pkt

hashg() % C

* updateincrements all cells; read returns the minimum

* Never under-estimates, has provable space-accuracy trade-off

e Customized to perform combined read-update operation

e Conditional increment upto the new value for better accuracy

- size : 1000 0 0 0 0 500 0 0
0 0 0 0 0 0 0
- size : 500 0 I so0 [0 0 0
0 0 0 0 B 500 0
min (0, 1000, 0, 0) = © + 500 = 500
Read Counter Update Counter
* Find the minimum of all cells * Increment all cells upto new value
e Bytes sent = minimum + pkt.size e cell® = max (cell®, new value)

* Implemented in hardware using predicated read-write registers

Buffering Packets in Approximate Sorted Order

K K-1 .. 2 1 0
\ Round 1
Flow 1 —_—
Round 2
Flow 2 — K
FIFO
queues
Round K
Flow N —_—
Ideal per-flow queues ¥ Approximate Fair Queueing
BpR
* Coarse rounds: flows transmit a per round (BpR)

* For each packet, outgoing round number = bytes sent / BpR

Rotating Strict Priority (RSP)

Flow 1

Flow 2

Flow N

K

K-1 .. 2 1
\

0

Ideal per-flow queues

Round 1

Round 2

Round K .

Approximate Fair Queueing

* Drain queue with the lowest round number till it is empty

* Push queue to lowest priority; increment round number by 1

Highest
Priority

v
Lowest

Priority

Realizing an RSP Scheduler

RSP can be implemented in hardware
* ldentical complexity to a Deficit Round Robin scheduler

RSP can be emulated on current switches

» Switch CPU to periodically change priorities
* Hierarchical priority queues

Avoid explicit round number synchronization by exposing queue metadata

Utilize dynamic buffer sharing to vary size of individual queues

Summary of Techniques

1. Modified count-min sketch
+ Counters for large number of flows in limited memory
- Collisions cause packets to enqueue in a later round

2. RSP queues to approximate sorted buffer
+ Process packets in fixed number of operations
- Packets can be reordered within a round

3. Coarse round numbers
+ Updates to shared state are not per-packet anymore
- Packets can enqueue in an earlier round

Enhancing AFQ with End-host Flow Control

* AFQ can be deployed without modifying end-hosts.

e Adapt the [Keshay, 91] to gain even more benefits.

* Sender transmits a pair of back-to-back packets.

* Inter-arrival delay is an estimate of the bottleneck bandwidth.

* End-hosts send packets at estimated rate.

e Lets us perform and keep sizes.

Evaluation

—

Does AFQ improve overall performance? _
— This talk

What is the impact of approximations?

Can AFQ deal with incast traffic patterns?

How many FIFO queues are sufficient?
— In the paper

What size count-min sketch is required?

How do we set the BpR parameter?]

Prototype Implementation

Built a 4-port AFQ switch atop a Cavium Network Processor.

Pipelines run on MIPS CPU; packets & counters stored in DRAM.

Each port runs at 10gbps with 32 FIFO queues and 4x16k sketch.

Tested on a 2-level fat-tree topology.

Implemented packet-pair flow control in user space.

Testbed Results

A mTCP EmDCICP HAFQ
100

Normalized 99%tile
Flow
Completion 10

Average
N || i I I|| |II

Flow size L { Y W N
rd
(in bytes) e N

>

* Compared to TCP, 4x better average FCT, 10x better tail latency.
 Compared to DCTCP, 2x better average FCT, 4x better tail latency.

Simulation Results: Comparison to Fair Queueing

All Flows Short Flows < 100 KB
2000 400 == TCP
—e— DCTCP
1600 320
== SFQ
Average
1200 240
FCT AFQ
inus
H 800 160
400 80
0 0
10 20 30 40 50 60 70 80 90 10 20 30 40 50 e0 70 80 90

Network Load (%) Network Load (%)

Other Results

Accurate approximation achieved using 12 to 16 FIFO queues.

Less than 10% extra resource overhead on top of switch.p4.

Significant improvement even with existing end-host protocols.

Provides ideal fairness during incast traffic patterns.

Reduces drops and retransmissions by 10x compared to DCTCP.

summary

Practical implementation of Fair Queueing at line-rate.

Use approximation techniques to overcome hardware constraints.
* Modified sketch to store per-flow counters

* Leverage limited FIFO queues to approximate sorted buffer

Approximations are both effective and accurate.

Leads to 4-8x improvement in flow completion times.

