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Congestion Control Today

Primarily achieved using end-to-end protocols (TCP, DCTCP, TIMELY, ..)

• End-hosts react to signals from the network.

• Network does not enforce fair sharing or isolation.

+ Requires minimal network support

+ Switches can operate at very high speeds

- End-host must cooperate to achieve fairness

- Leads to several inefficiencies and poor isolation



Fair Queueing : in-network enforcement

Enforce fair allocation and isolation at switches

• Provide an illusion that every flow has its own queue

• Proven to have perfect isolation and fairness

+ Simplifies congestion control at the end-host

+ Protects against misbehaving traffic

+ Enables bounded delay guarantees

However, challenging to realize in high-speed switches.



Fair Queueing without per-flow queues



Sorted packet buffer
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Fair Queueing without per-flow queues

• Simulates an ideal round-robin scheme where each active flow transmits 
a single bit of data every round.
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Rest of the talk

• Background: Reconfigurable Switches

• Our approach: Approximate Fair Queueing

• Optimized End-host Flow Control Protocol

• Prototype Implementation

• Evaluation



Reconfigurable Switches

• New class of programmable switches that allow customizable data-plane
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• TCAM, SRAM for table lookups or matches

• ALUs for modifying headers and registers

• Stateful memory for counter and meters

• port = lookup(eth.dst_mac)
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Realizing Fair Queueing on Reconfigurable Switches

1. Maintain a sorted packet buffer

• Requirement: O(logN) insertion complexity

• Constraint: Limited operations per packet

2. Store per-flow counters

• Requirement: Per-flow mutable state

• Constraint: Limited switch memory

3. Access and modify current round number

• Requirement: Synchronize state across switch modules

• Constraint: Limited cross-module communication



“Simulated” fair-queueing
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Our approach: Approximate Fair Queueing

Simulate a bit-by-bit round robin scheme with key approximations

Flow 1

Flow 2

Flow 3

Flow 4

Ideal fair-queueing

A

B

C

D

E ACD

BE

3 2 1 0

Coarse round numbers Limited # of FIFO queues with rotating 
priorities to approximate a sorted buffer

Store approximate per-flow counters using 
a variation of the count-min sketch



Storing Approximate Flow Counters 

• Variation of count-min sketch to track flow’s finish round number
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• update increments all cells; read returns the minimum

• Never under-estimates, has provable space-accuracy trade-off



min (0, 1000, 0, 0) = 0 + 500 = 500
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Read Counter

• Find the minimum of all cells

• Bytes sent = minimum + pkt.size

Update Counter

• Increment all cells upto new value

• cellx,y = max (cellx,y, new value)
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• Customized to perform combined read-update operation

• Conditional increment upto the new value for better accuracy

• Implemented in hardware using predicated read-write registers



Buffering Packets in Approximate Sorted Order

• Coarse rounds: flows transmit a quantum of bytes per round (BpR)

• For each packet, outgoing round number = bytes sent / BpR
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Rotating Strict Priority (RSP)

• Drain queue with the lowest round number till it is empty

• Push queue to lowest priority; increment round number by 1
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Realizing an RSP Scheduler

RSP can be implemented in hardware

• Identical complexity to a Deficit Round Robin scheduler

RSP can be emulated on current switches

• Switch CPU to periodically change priorities

• Hierarchical priority queues

Avoid explicit round number synchronization by exposing queue metadata

Utilize dynamic buffer sharing to vary size of individual queues



Summary of Techniques

1. Modified count-min sketch

+ Counters for large number of flows in limited memory

- Collisions cause packets to enqueue in a later round

2. RSP queues to approximate sorted buffer

+ Process packets in fixed number of operations

- Packets can be reordered within a round

3. Coarse round numbers

+ Updates to shared state are not per-packet anymore

- Packets can enqueue in an earlier round



Enhancing AFQ with End-host Flow Control

• AFQ can be deployed without modifying end-hosts.

• Adapt the packet-pair algorithm [Keshav, 91] to gain even more benefits.

• Sender transmits a pair of back-to-back packets.

• Inter-arrival delay is an estimate of the bottleneck bandwidth.

• End-hosts send packets at estimated rate.

• Lets us perform fast ramp-up and keep small queue sizes.



Evaluation

• Does AFQ improve overall performance?

• What is the impact of approximations?

• Can AFQ deal with incast traffic patterns?

• How many FIFO queues are sufficient?

• What size count-min sketch is required?

• How do we set the BpR parameter?

In the paper

This talk



Prototype Implementation

• Built a 4-port AFQ switch atop a Cavium Network Processor.

• Pipelines run on MIPS CPU; packets & counters stored in DRAM.

• Each port runs at 10gbps with 32 FIFO queues and 4x16k sketch.

• Tested on a 2-level fat-tree topology.

• Implemented packet-pair flow control in user space.



Testbed Results
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• Compared to TCP, 4x better average FCT, 10x better tail latency.

• Compared to DCTCP, 2x better average FCT, 4x better tail latency. 



Simulation Results: Comparison to Fair Queueing
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Other Results

• Accurate approximation achieved using 12 to 16 FIFO queues.

• Less than 10% extra resource overhead on top of switch.p4.

• Significant improvement even with existing end-host protocols.

• Provides ideal fairness during incast traffic patterns.

• Reduces drops and retransmissions by 10x compared to DCTCP.



Summary

• Practical implementation of Fair Queueing at line-rate.

• Use approximation techniques to overcome hardware constraints.

• Modified sketch to store per-flow counters

• Leverage limited FIFO queues to approximate sorted buffer

• Approximations are both effective and accurate.

• Leads to 4-8x improvement in flow completion times.


