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Congestion Control Today

Primarily achieved using protocols (TCP, DCTCP, TIMELY, ..)

* End-hosts react to signals from the network.
* Network does not enforce fair sharing or isolation.

+ Requires minimal network support
+ Switches can operate at very high speeds
- End-host must cooperate to achieve fairness

- Leads to several inefficiencies and poor isolation



Fair Queueing : in-network enforcement

fair allocation and isolation at switches
* Provide an illusion that every flow has its own queue
* Proven to have perfect isolation and fairness

+ Simplifies congestion control at the end-host
+ Protects against misbehaving traffic

+ Enables bounded delay guarantees

However, challenging to realize in high-speed switches.



Fair Queueing without per-flow queues

Analysis and Simulation of a Fair Queueing Algorithm

Alan Demers
Srinivasan Keshavt
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Abstract

We discuss gateway queueing algorithms and their
role in controlling congestion in datagram networks.
A fair queueing algorithm, based on an earlier
suggestion by Nagle, is proposed. Analysis and
simulations are used to compare this algorithm to

often ignored, makes queueing algorithms a crucial
component in effective congestion control.

Queueing algorithms can be thought of as allocat-
ing three nearly independent quantities: bandwidth
(which packets get transmitted), promptness (when
do those packets get transmitted), and buffer space
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Fair Queueing without per-flow queues

* Simulates an ideal round-robin scheme where each active flow transmits

a single bit of data every round.

Flow 1

Flow 2

Flow 3

Flow 4

Round Number

Ideal fair-queueing

Flow
Counters

Track global round number

Sorted packet buffer

Store and update per-flow counters

“Simulated” fair-queueing (Demers et.al.)



Rest of the talk

Background: Reconfigurable Switches

Our approach: Approximate Fair Queueing

Optimized End-host Flow Control Protocol

Prototype Implementation

Evaluation



Reconfigurable Switches

* New class of programmable switches that allow customizable data-plane

Packet
Stream

* TCAM, SRAM for table lookups or matches
* ALUs for modifying headers and registers

* Stateful memory for counter and meters
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Realizing Fair Queueing on Reconfigurable Switches

1. Maintain a packet buffer
* Requirement: O(logN) insertion complexity
e Constraint: Limited operations per packet

2. Store counters
* Requirement: Per-flow mutable state
* Constraint: Limited switch memory

3. Access and current round number
* Requirement: Synchronize state across switch modules
e (Constraint: Limited cross-module communication



Our approach: Approximate Fair Queueing

Simulate a bit-by-bit round robin scheme with key approximations

Flow 1

Flow 2

Flow 3

Flow 4

Coarse round numbers

3 98765243210
Ll ||

Ideal fair-queueing

Limited # of FIFO queues with rotating
priorities to approximate a sorted buffer

—

Store approximate per-flow counters using
a variation of the count-min sketch

“Simulated” fair-queueing



Storing Approximate Flow Counters

e Variation of to track flow’s finish round number

C
hash,() % C

hash,() % C

pkt

hashg() % C

* updateincrements all cells; read returns the minimum

* Never under-estimates, has provable space-accuracy trade-off



e Customized to perform combined read-update operation

e Conditional increment upto the new value for better accuracy

- size : 1000 0 0 0 0 500 0 0
0 0 0 0 0 0 0
- size : 500 0 I so0 [ 0 0 0
0 0 0 0 B 500 0
min (0, 1000, 0, 0) = © + 500 = 500
Read Counter Update Counter
* Find the minimum of all cells * Increment all cells upto new value
e Bytes sent = minimum + pkt.size e cell® = max (cell®, new value)

* Implemented in hardware using predicated read-write registers



Buffering Packets in Approximate Sorted Order

K K-1 .. 2 1 0
\ Round 1
Flow 1 —_—
Round 2
Flow 2 — K
FIFO
queues
Round K
Flow N —_—
Ideal per-flow queues ¥ Approximate Fair Queueing
BpR
* Coarse rounds: flows transmit a per round (BpR)

* For each packet, outgoing round number = bytes sent / BpR



Rotating Strict Priority (RSP)

Flow 1

Flow 2

Flow N
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Ideal per-flow queues

Round 1

Round 2

Round K .

Approximate Fair Queueing

* Drain queue with the lowest round number till it is empty

* Push queue to lowest priority; increment round number by 1

Highest
Priority

v
Lowest

Priority



Realizing an RSP Scheduler

RSP can be implemented in hardware
* ldentical complexity to a Deficit Round Robin scheduler

RSP can be emulated on current switches

» Switch CPU to periodically change priorities
* Hierarchical priority queues

Avoid explicit round number synchronization by exposing queue metadata

Utilize dynamic buffer sharing to vary size of individual queues



Summary of Techniques

1. Modified count-min sketch
+ Counters for large number of flows in limited memory
- Collisions cause packets to enqueue in a later round

2. RSP queues to approximate sorted buffer
+ Process packets in fixed number of operations
- Packets can be reordered within a round

3. Coarse round numbers
+ Updates to shared state are not per-packet anymore
- Packets can enqueue in an earlier round



Enhancing AFQ with End-host Flow Control

* AFQ can be deployed without modifying end-hosts.

e Adapt the [Keshay, 91] to gain even more benefits.

* Sender transmits a pair of back-to-back packets.

* Inter-arrival delay is an estimate of the bottleneck bandwidth.

* End-hosts send packets at estimated rate.

e Lets us perform and keep sizes.



Evaluation

—

Does AFQ improve overall performance? _
— This talk

What is the impact of approximations?

Can AFQ deal with incast traffic patterns?

How many FIFO queues are sufficient?
— In the paper

What size count-min sketch is required?

How do we set the BpR parameter? ]



Prototype Implementation

Built a 4-port AFQ switch atop a Cavium Network Processor.

Pipelines run on MIPS CPU; packets & counters stored in DRAM.

Each port runs at 10gbps with 32 FIFO queues and 4x16k sketch.

Tested on a 2-level fat-tree topology.

Implemented packet-pair flow control in user space.



Testbed Results
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* Compared to TCP, 4x better average FCT, 10x better tail latency.
 Compared to DCTCP, 2x better average FCT, 4x better tail latency.



Simulation Results: Comparison to Fair Queueing
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Other Results

Accurate approximation achieved using 12 to 16 FIFO queues.

Less than 10% extra resource overhead on top of switch.p4.

Significant improvement even with existing end-host protocols.

Provides ideal fairness during incast traffic patterns.

Reduces drops and retransmissions by 10x compared to DCTCP.



summary

Practical implementation of Fair Queueing at line-rate.

Use approximation techniques to overcome hardware constraints.
* Modified sketch to store per-flow counters

* Leverage limited FIFO queues to approximate sorted buffer

Approximations are both effective and accurate.

Leads to 4-8x improvement in flow completion times.



