
Iron: Isolating Network-based 
CPU in Container Environments

Junaid Khalid1,  Eric Rozner2, Wesley Felter2,3, Cong Xu2, 
Karthick Rajamani2, Alexandre Ferreira2,4, Aditya Akella1

13Now at State Street, 4Now at ARM 



VM

Virtualization

OS

HW

App

VM

OS

App

VM

OS

App

Container

HW

App

Container

App

Container

App

OSHypervisor/ Host OS

Virtual machines Containers

2



VM

Virtualization

OS

HW

App

VM

OS

App

VM

OS

App

Container

HW

App

Container

App

Container

App

OSHypervisor/ Host OS

Virtual machines

Light weight 

Fast

Heavy weight 

Slow

Containers

2



VM

Virtualization

OS

HW

App

VM

OS

App

VM

OS

App

Container

HW

App

Container

App

Container

App

OSHypervisor/ Host OS

Virtual machines

Light weight 

Fast

Heavy weight 

Slow

Containers

Supports new workloads such as 
microservices and serverless

2



HW

OS

Isolation

Container

App1

Container

App2

Containers

3



HW

OS

Containers require strong resource 
isolation

• Memory

• Network

• CPU

Isolation

Container

App1

Container

App2

Containers

3



HW

OS

Containers require strong resource 
isolation

• Memory

• Network

• CPU

Isolation

Administrators want to strongly control resource 
allocation in multi-tenant environments 

Container

App1

Container

App2

Containers

3



HW

OS

Containers require strong resource 
isolation

• Memory

• Network

• CPU

Isolation

Administrators want to strongly control resource 
allocation in multi-tenant environments 

Container

App1

Container

App2

Strong isolation is important  for performance, 
predictability and efficiency

Containers

3



Isolation

Isolation: A container shouldn’t consume more 
than its assigned share of resources

HW

OS

Container

App1

Container

App2

Containers

4



Isolation

50% 50%allocated share

Isolation: A container shouldn’t consume more 
than its assigned share of resources

HW

OS

Container

App1

Container

App2

Containers

4



Isolation

50% 50%allocated share

50% 50%actual usage

Isolation: A container shouldn’t consume more 
than its assigned share of resources

HW

OS

Container

App1

Container

App2

Containers

4



Isolation

50% 50%allocated share

50% 50%actual usage

cgroups ensures CPU isolation by 
allocating, metering, and enforcing
resource usage in the kernel  

Isolation: A container shouldn’t consume more 
than its assigned share of resources

HW

OS

Container

App1

Container

App2

Containers

4



HW

Container

App

OS

Isolation

vs

Containers

50% 50%allocated share

50% 50%actual usage

cGroup ensures resource isolation by 
allocating, metering, and enforcing
resource usage in the kernel  

Isolation: network 
intensive

compute 
intensive

A container shouldn’t consume more 
than its assigned share of resources

Container

App

CPU isolation provided by Linux breaks down while 
handling the network traffic

5



• How and by how much is isolation broken

Outline

6



• How and by how much is isolation broken

• Iron’s design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement 

• Integration with Linux scheduler 

• Hardware-based packet dropping 

Outline

6



• How and by how much is isolation broken

• Iron’s design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement 

• Integration with Linux scheduler 

• Hardware-based packet dropping 

• Evaluation 
• Controlled workload

• Realistic workload

Outline

6



HW

OS

Isolation is Broken

=Penalty 
factor

Time that job takes when 
competing with traffic

Time that job takes when 
competing with compute

Containers

7



HW

Container

OS

Isolation is Broken

WordCount

=Penalty 
factor

Time that job takes when 
competing with traffic

Time that job takes when 
competing with compute

Containers

7



HW

Container

OS

Isolation is Broken

WordCount

=Penalty 
factor

Time that job takes when 
competing with traffic

Time that job takes when 
competing with compute

compute 
intensive

Containers

7



HW

Container Container

TeraSort

OS

Isolation is Broken

WordCount

=Penalty 
factor

Time that job takes when 
competing with traffic

Time that job takes when 
competing with compute

compute 
intensive

Containers

7



HW

Container Container

TeraSort

OS

Isolation is Broken

WordCount

=Penalty 
factor

Time that job takes when 
competing with traffic

Time that job takes when 
competing with compute

network 
intensive

compute 
intensive

Containers

7



HW

Container Container

TeraSort

OS

Isolation is Broken

Core 1

WordCount

=Penalty 
factor

Time that job takes when 
competing with traffic

Time that job takes when 
competing with compute

network 
intensive

compute 
intensive

Containers

7



HW

Container Container

TeraSort

OS

Isolation is Broken

Core 1

Wordcount can take 1.5x longer when it 
shares the core with TeraSort

WordCount

=Penalty 
factor

Time that job takes when 
competing with traffic

Time that job takes when 
competing with compute

network 
intensive

compute 
intensive

Containers

7



HW

Container Container

TeraSort

OS

Isolation is Broken

Core 1

Wordcount can take 1.5x longer when it 
shares the core with TeraSort

WordCount

=Penalty 
factor

Time that job takes when 
competing with traffic

Time that job takes when 
competing with compute

vs
running alone

network 
intensive

compute 
intensive

Containers

7



HW

Container

App

OS

Practical Implications

Container

App

overcharging  & high variance 
in the performance 

1) Insufficient isolation vsnetwork 
intensive

compute 
intensive

Containers

8



HW

Container

App

OS

Practical Implications

50% 50%allocated share

Container

App

overcharging  & high variance 
in the performance 

1) Insufficient isolation vsnetwork 
intensive

compute 
intensive

Containers

8



HW

Container

App

OS

Practical Implications

50% 50%allocated share

70% 30%actual usage

Container

App

overcharging  & high variance 
in the performance 

1) Insufficient isolation vsnetwork 
intensive

compute 
intensive

Containers

8



HW

OS

2) Under provisioning

waste of potential revenue
Container

App

overcharging  & high variance 
in the performance 

1) Insufficient isolation

Practical Implications

Containers

9



HW

OS

100%allocated share

2) Under provisioning

waste of potential revenue
Container

App

overcharging  & high variance 
in the performance 

1) Insufficient isolation

Practical Implications

Containers

9



HW

OS

100%allocated share

50%actual usage

2) Under provisioning

waste of potential revenue
Container

App

overcharging  & high variance 
in the performance 

1) Insufficient isolation

Practical Implications

Containers

9



HW

OS

100%allocated share

50%actual usage

2) Under provisioning

waste of potential revenue
Container

App

overcharging  & high variance 
in the performance 

1) Insufficient isolation

Practical Implications

Containers

wasted CPU

9



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

time

Scheduled task/process

wordcount
Interrupt handler

10



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

time

Scheduled task/process

wordcount
Interrupt handler

compute 
intensive

10



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

time

Scheduled task/process

wordcount
Interrupt handler

network 
intensive

compute 
intensive

10



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

time

Scheduled task/process

wordcount
Interrupt handler

network 
intensive

compute 
intensive

10



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

time

Scheduled task/process

wordcount
Interrupt handler

network 
intensive

compute 
intensive

10



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

time

Scheduled task/process

wordcount
Interrupt handler

network 
intensive

compute 
intensive

10



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

time

Scheduled task/process

wordcount
Interrupt handler

network 
intensive

compute 
intensive

10



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

time

Scheduled task/process

wordcount
Interrupt handler

Scheduler charges wordcount for 
“t”, instead of “t - ∆t”

network 
intensive

compute 
intensive

t

∆t

10



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

time

Scheduled task/process

wordcount
Interrupt handler

Scheduler charges wordcount for 
“t”, instead of “t - ∆t”

Charging: Reduction in the runtime of 
a container

network 
intensive

compute 
intensive

t

∆t

10



How is Isolation Broken?

NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

• Time spend in servicing 
interrupts is incorrectly 
charged

time

Scheduled task/process

wordcount
Interrupt handler

Scheduler charges wordcount for 
“t”, instead of “t - ∆t”

Charging: Reduction in the runtime of 
a container

network 
intensive

compute 
intensive

t

∆t

10



NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

• Time spend in servicing 
interrupts is not accounted 
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU 
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the 
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

11



NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

• Time spend in servicing 
interrupts is not accounted 
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU 
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the 
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt 
handler

11



NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

• Time spend in servicing 
interrupts is not accounted 
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU 
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the 
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt 
handler

Isolation

11



NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

• Time spend in servicing 
interrupts is not accounted 
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU 
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the 
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt 
handler

Efficiency

Isolation

11



NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

• Time spend in servicing 
interrupts is not accounted 
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU 
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the 
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt 
handler

Responsiveness

Efficiency

Isolation

11



NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

• Time spend in servicing 
interrupts is not accounted 
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU 
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the 
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt 
handler

ResponsivenessThroughput

Efficiency

Isolation

11



NIC ring  

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word 
Count

• Kernel processes network 
traffic via interrupts

• Time spend in servicing 
interrupts is not accounted 
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU 
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the 
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt 
handler

ResponsivenessThroughput

Simplicity
Efficiency

Isolation

11



Sender Side 

NIC ring  

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

OS
OS

12



Sender Side 

NIC ring  

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

OS

12



Sender Side 

NIC ring  

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

12



Sender Side 

NIC ring  

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

12



Sender Side 

NIC ring  

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

12



Sender Side 

NIC ring  

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Process context

Sender stack

No Problem!

userspace

kernel

12



Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Sender Side

NIC ring  

buffer

userspace

kernel

Rate 
limiter

13



Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Sender Side

NIC ring  

buffer

userspace

kernel

Rate 
limiter

13



Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

NIC ring  

buffer

userspace

kernel

Rate 
limiter

13



Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• System call exits after enqueuing the packet

NIC ring  

buffer

userspace

kernel

Rate 
limiter

13



Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Process may not 
get charged

Non-process 
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• System call exits after enqueuing the packet

• Soft interrupt is responsible for dequeuing 
and delivering it to the NIC

NIC ring  

buffer

userspace

kernel

Rate 
limiter

Sender stack

13



Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not 
getting charged

Non-process 
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring  

buffer

userspace

kernel

Linux services a softirq 

1) at the end of hardware interrupt processing, in the context of 
the currently scheduled process

time

Scheduled task/process

wordcount
interrupt hander

14



Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not 
getting charged

Non-process 
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring  

buffer

userspace

kernel

Linux services a softirq 

1) at the end of hardware interrupt processing, in the context of 
the currently scheduled process

time

Scheduled task/process

wordcount
interrupt hander

14



Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not 
getting charged

Non-process 
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring  

buffer

userspace

kernel

Linux services a softirq 

1) at the end of hardware interrupt processing, in the context of 
the currently scheduled process

2) through ksoftirqd thread (a per core kernel thread)

time

Scheduled task/process

wordcount
interrupt hander

14



Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not 
getting charged

Non-process 
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring  

buffer

userspace

kernel

Linux services a softirq 

1) at the end of hardware interrupt processing, in the context of 
the currently scheduled process

2) through ksoftirqd thread (a per core kernel thread)

time

Scheduled task/process

wordcount
interrupt hander

50% 50%allocated share

40% 40%actual usage 20%

ksoftirqd

14



Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not 
getting charged

Non-process 
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring  

buffer

userspace

kernel

Linux services the softirq

1) at the end of hardware interrupt processing, in the context of 
the current scheduled process.

2) through ksoftirqd thread (a per core kernel thread)

time

Scheduled task/process

wordcount
interrupt hander

50% 50%allocated share

40% 40%actual usage 20%

ksoftirqd

Softirq processing can be charged incorrectly or not 
charged at all to any container

15



Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

16



Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

16



Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim 
(sysbench)

16



Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim 
(sysbench) (sysbench) (sysbench) (sysbench)

Interferers
16



Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim 
(sysbench) (sysbench) (sysbench) (sysbench)

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim 
(sysbench)

Sender/
Receiver

=Penalty 
factor

Time that victim takes when 
competing with traffic

Time that victim takes when 
competing with sysbench

Sender/
Receiver

Sender/
Receiver

Interferers

Interferers
16



Impact Of Network Traffic

=Penalty 
factor Time that victim takes when 

competing with sysbench

Time that victim takes when 
competing with traffic

17



Impact Of Network Traffic

HTB is used for traffic shaping @ 5Gbps

TCP Sender

=Penalty 
factor Time that victim takes when 

competing with sysbench

0

0.5

1

1.5

2

2 10Pe
n

al
ty

 F
ac

to
r

Number of containers 

10 flows 50 flows 100 flows

Time that victim takes when 
competing with traffic

17



Impact Of Network Traffic

HTB is used for traffic shaping @ 5Gbps

TCP Sender

Higher is worse

=Penalty 
factor Time that victim takes when 

competing with sysbench

0

0.5

1

1.5

2

2 10Pe
n

al
ty

 F
ac

to
r

Number of containers 

10 flows 50 flows 100 flows

Time that victim takes when 
competing with traffic

17



Impact Of Network Traffic

HTB is used for traffic shaping @ 5Gbps

Maximum penalty factor is around 1.85

TCP Sender

Higher is worse

=Penalty 
factor Time that victim takes when 

competing with sysbench

0

0.5

1

1.5

2

2 10Pe
n

al
ty

 F
ac

to
r

Number of containers 

10 flows 50 flows 100 flows

Time that victim takes when 
competing with traffic

17



Impact Of Network Traffic

HTB is used for traffic shaping @ 5Gbps

Maximum penalty factor is around 1.85

TCP Sender

Higher is worse

=Penalty 
factor Time that victim takes when 

competing with sysbench

0

0.5

1

1.5

2

2 10Pe
n

al
ty

 F
ac

to
r

Number of containers 

10 flows 50 flows 100 flows

Time that victim takes when 
competing with traffic

Look at our paper for 
the impact of UDP traffic

17



Receiver Side

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

NIC ring  

buffer

userspace

kernel

18



Receiver Side

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

• Receiver side problem is much worse than 
the sender

NIC ring  

buffer

userspace

kernel

18



Receiver Side

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Process context

Receiver stack

Non-process 
and interrupt 

context
qdisc/tc

• Receiver side problem is much worse than 
the sender

• Packet is processed in non-process context 
until copied to application’s socket

NIC ring  

buffer

userspace

kernel

18



Impact Of Network Traffic

TCP Receiver

=Penalty 
factor Time that victim takes when 

competing with sysbench

0
1
2
3
4
5
6
7

2 10

Pe
n

al
ty

 F
ac

to
r

Number of containers 

10 flows 50 flows 100 flows

Time that victim takes when 
competing with traffic

19



Impact Of Network Traffic

TCP Receiver

Higher is worse

=Penalty 
factor Time that victim takes when 

competing with sysbench

0
1
2
3
4
5
6
7

2 10

Pe
n

al
ty

 F
ac

to
r

Number of containers 

10 flows 50 flows 100 flows

Time that victim takes when 
competing with traffic

19



Impact Of Network Traffic

Maximum penalty factor is around 6

TCP Receiver

Higher is worse

=Penalty 
factor Time that victim takes when 

competing with sysbench

0
1
2
3
4
5
6
7

2 10

Pe
n

al
ty

 F
ac

to
r

Number of containers 

10 flows 50 flows 100 flows

Time that victim takes when 
competing with traffic

19



Scenarios When Isolation Breaks

Compute intensive 

vs 

Network intensive

OS

20



Scenarios When Isolation Breaks

Low network workload

vs 

High network workload

Compute intensive 

vs 

Network intensive

OS OS

20



Scenarios When Isolation Breaks

Low network workload

vs 

High network workload

Compute intensive 

vs 

Network intensive

Network intensive 

vs

Network intensive with 
kernel bypass

OS OS OS

20



Iron

A scheme that ensures and enforces accounting of network-
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• How and by how much is isolation broken

• Iron’s Design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement 

• Integration with Linux scheduler 

• Hardware-based packet dropping 

• Evaluation 
• Controlled workload

• Realistic workload

Outline
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Impact on Big Data Applications

Penalty factor never exceeds 1.04

Setup

• 48 containers spread over 6 machines

• Each job runs over 24 containers

MapReduce jobs as victim:

• wordcount: counts word frequency 

• pi: computes the value of pi

• grep: searches for a given word
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Summary

• Evaluated the interference caused by network-based containers. 

• Provided hardened isolation for network-based processing in 
containerized environment.

• Ensures accurate accounting of the time spent processing network 
traffic in softirq.

• Integrated with Linux scheduler with minimal changes.

• Novel packet dropping mechanism to limit the interference. 
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