
Iron: Isolating Network-based
CPU in Container Environments

Junaid Khalid1, Eric Rozner2, Wesley Felter2,3, Cong Xu2,
Karthick Rajamani2, Alexandre Ferreira2,4, Aditya Akella1

13Now at State Street, 4Now at ARM

VM

Virtualization

OS

HW

App

VM

OS

App

VM

OS

App

Container

HW

App

Container

App

Container

App

OSHypervisor/ Host OS

Virtual machines Containers

2

VM

Virtualization

OS

HW

App

VM

OS

App

VM

OS

App

Container

HW

App

Container

App

Container

App

OSHypervisor/ Host OS

Virtual machines

Light weight

Fast

Heavy weight

Slow

Containers

2

VM

Virtualization

OS

HW

App

VM

OS

App

VM

OS

App

Container

HW

App

Container

App

Container

App

OSHypervisor/ Host OS

Virtual machines

Light weight

Fast

Heavy weight

Slow

Containers

Supports new workloads such as
microservices and serverless

2

HW

OS

Isolation

Container

App1

Container

App2

Containers

3

HW

OS

Containers require strong resource
isolation

• Memory

• Network

• CPU

Isolation

Container

App1

Container

App2

Containers

3

HW

OS

Containers require strong resource
isolation

• Memory

• Network

• CPU

Isolation

Administrators want to strongly control resource
allocation in multi-tenant environments

Container

App1

Container

App2

Containers

3

HW

OS

Containers require strong resource
isolation

• Memory

• Network

• CPU

Isolation

Administrators want to strongly control resource
allocation in multi-tenant environments

Container

App1

Container

App2

Strong isolation is important for performance,
predictability and efficiency

Containers

3

Isolation

Isolation: A container shouldn’t consume more
than its assigned share of resources

HW

OS

Container

App1

Container

App2

Containers

4

Isolation

50% 50%allocated share

Isolation: A container shouldn’t consume more
than its assigned share of resources

HW

OS

Container

App1

Container

App2

Containers

4

Isolation

50% 50%allocated share

50% 50%actual usage

Isolation: A container shouldn’t consume more
than its assigned share of resources

HW

OS

Container

App1

Container

App2

Containers

4

Isolation

50% 50%allocated share

50% 50%actual usage

cgroups ensures CPU isolation by
allocating, metering, and enforcing
resource usage in the kernel

Isolation: A container shouldn’t consume more
than its assigned share of resources

HW

OS

Container

App1

Container

App2

Containers

4

HW

Container

App

OS

Isolation

vs

Containers

50% 50%allocated share

50% 50%actual usage

cGroup ensures resource isolation by
allocating, metering, and enforcing
resource usage in the kernel

Isolation: network
intensive

compute
intensive

A container shouldn’t consume more
than its assigned share of resources

Container

App

CPU isolation provided by Linux breaks down while
handling the network traffic

5

• How and by how much is isolation broken

Outline

6

• How and by how much is isolation broken

• Iron’s design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement

• Integration with Linux scheduler

• Hardware-based packet dropping

Outline

6

• How and by how much is isolation broken

• Iron’s design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement

• Integration with Linux scheduler

• Hardware-based packet dropping

• Evaluation
• Controlled workload

• Realistic workload

Outline

6

HW

OS

Isolation is Broken

=Penalty
factor

Time that job takes when
competing with traffic

Time that job takes when
competing with compute

Containers

7

HW

Container

OS

Isolation is Broken

WordCount

=Penalty
factor

Time that job takes when
competing with traffic

Time that job takes when
competing with compute

Containers

7

HW

Container

OS

Isolation is Broken

WordCount

=Penalty
factor

Time that job takes when
competing with traffic

Time that job takes when
competing with compute

compute
intensive

Containers

7

HW

Container Container

TeraSort

OS

Isolation is Broken

WordCount

=Penalty
factor

Time that job takes when
competing with traffic

Time that job takes when
competing with compute

compute
intensive

Containers

7

HW

Container Container

TeraSort

OS

Isolation is Broken

WordCount

=Penalty
factor

Time that job takes when
competing with traffic

Time that job takes when
competing with compute

network
intensive

compute
intensive

Containers

7

HW

Container Container

TeraSort

OS

Isolation is Broken

Core 1

WordCount

=Penalty
factor

Time that job takes when
competing with traffic

Time that job takes when
competing with compute

network
intensive

compute
intensive

Containers

7

HW

Container Container

TeraSort

OS

Isolation is Broken

Core 1

Wordcount can take 1.5x longer when it
shares the core with TeraSort

WordCount

=Penalty
factor

Time that job takes when
competing with traffic

Time that job takes when
competing with compute

network
intensive

compute
intensive

Containers

7

HW

Container Container

TeraSort

OS

Isolation is Broken

Core 1

Wordcount can take 1.5x longer when it
shares the core with TeraSort

WordCount

=Penalty
factor

Time that job takes when
competing with traffic

Time that job takes when
competing with compute

vs
running alone

network
intensive

compute
intensive

Containers

7

HW

Container

App

OS

Practical Implications

Container

App

overcharging & high variance
in the performance

1) Insufficient isolation vsnetwork
intensive

compute
intensive

Containers

8

HW

Container

App

OS

Practical Implications

50% 50%allocated share

Container

App

overcharging & high variance
in the performance

1) Insufficient isolation vsnetwork
intensive

compute
intensive

Containers

8

HW

Container

App

OS

Practical Implications

50% 50%allocated share

70% 30%actual usage

Container

App

overcharging & high variance
in the performance

1) Insufficient isolation vsnetwork
intensive

compute
intensive

Containers

8

HW

OS

2) Under provisioning

waste of potential revenue
Container

App

overcharging & high variance
in the performance

1) Insufficient isolation

Practical Implications

Containers

9

HW

OS

100%allocated share

2) Under provisioning

waste of potential revenue
Container

App

overcharging & high variance
in the performance

1) Insufficient isolation

Practical Implications

Containers

9

HW

OS

100%allocated share

50%actual usage

2) Under provisioning

waste of potential revenue
Container

App

overcharging & high variance
in the performance

1) Insufficient isolation

Practical Implications

Containers

9

HW

OS

100%allocated share

50%actual usage

2) Under provisioning

waste of potential revenue
Container

App

overcharging & high variance
in the performance

1) Insufficient isolation

Practical Implications

Containers

wasted CPU

9

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

time

Scheduled task/process

wordcount
Interrupt handler

10

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

time

Scheduled task/process

wordcount
Interrupt handler

compute
intensive

10

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

time

Scheduled task/process

wordcount
Interrupt handler

network
intensive

compute
intensive

10

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

time

Scheduled task/process

wordcount
Interrupt handler

network
intensive

compute
intensive

10

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

time

Scheduled task/process

wordcount
Interrupt handler

network
intensive

compute
intensive

10

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

time

Scheduled task/process

wordcount
Interrupt handler

network
intensive

compute
intensive

10

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

time

Scheduled task/process

wordcount
Interrupt handler

network
intensive

compute
intensive

10

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

time

Scheduled task/process

wordcount
Interrupt handler

Scheduler charges wordcount for
“t”, instead of “t - ∆t”

network
intensive

compute
intensive

t

∆t

10

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

time

Scheduled task/process

wordcount
Interrupt handler

Scheduler charges wordcount for
“t”, instead of “t - ∆t”

Charging: Reduction in the runtime of
a container

network
intensive

compute
intensive

t

∆t

10

How is Isolation Broken?

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

• Time spend in servicing
interrupts is incorrectly
charged

time

Scheduled task/process

wordcount
Interrupt handler

Scheduler charges wordcount for
“t”, instead of “t - ∆t”

Charging: Reduction in the runtime of
a container

network
intensive

compute
intensive

t

∆t

10

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

• Time spend in servicing
interrupts is not accounted
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

11

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

• Time spend in servicing
interrupts is not accounted
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt
handler

11

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

• Time spend in servicing
interrupts is not accounted
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt
handler

Isolation

11

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

• Time spend in servicing
interrupts is not accounted
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt
handler

Efficiency

Isolation

11

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

• Time spend in servicing
interrupts is not accounted
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt
handler

Responsiveness

Efficiency

Isolation

11

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

• Time spend in servicing
interrupts is not accounted
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt
handler

ResponsivenessThroughput

Efficiency

Isolation

11

NIC ring

buffer

Tera
Sort

OS

NIC

userspace

kernel

Word
Count

• Kernel processes network
traffic via interrupts

• Time spend in servicing
interrupts is not accounted
properly

time

Scheduled task/process

wordcount
hardIRQ
softIRQ

Scheduler consider is as CPU
usage of wordcount

“... [software interrupts] a conglomerate of mostly unrelated jobs, which run in the
context of a randomly chosen victim w/o the ability to put any control on them.”

--Thomas Gleixner (Linux developer)

How did Linux get here?

Interrupt
handler

ResponsivenessThroughput

Simplicity
Efficiency

Isolation

11

Sender Side

NIC ring

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

OS
OS

12

Sender Side

NIC ring

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

OS

12

Sender Side

NIC ring

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

12

Sender Side

NIC ring

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

12

Sender Side

NIC ring

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Sender stack

userspace

kernel

12

Sender Side

NIC ring

buffer

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Process context

Sender stack

No Problem!

userspace

kernel

12

Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Sender Side

NIC ring

buffer

userspace

kernel

Rate
limiter

13

Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Sender Side

NIC ring

buffer

userspace

kernel

Rate
limiter

13

Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

NIC ring

buffer

userspace

kernel

Rate
limiter

13

Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• System call exits after enqueuing the packet

NIC ring

buffer

userspace

kernel

Rate
limiter

13

Process

TCP/IP stack

vSwitch

NIC driver

NIC

qdisc/tc

Process may not
get charged

Non-process
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• System call exits after enqueuing the packet

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

NIC ring

buffer

userspace

kernel

Rate
limiter

Sender stack

13

Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not
getting charged

Non-process
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring

buffer

userspace

kernel

Linux services a softirq

1) at the end of hardware interrupt processing, in the context of
the currently scheduled process

time

Scheduled task/process

wordcount
interrupt hander

14

Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not
getting charged

Non-process
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring

buffer

userspace

kernel

Linux services a softirq

1) at the end of hardware interrupt processing, in the context of
the currently scheduled process

time

Scheduled task/process

wordcount
interrupt hander

14

Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not
getting charged

Non-process
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring

buffer

userspace

kernel

Linux services a softirq

1) at the end of hardware interrupt processing, in the context of
the currently scheduled process

2) through ksoftirqd thread (a per core kernel thread)

time

Scheduled task/process

wordcount
interrupt hander

14

Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not
getting charged

Non-process
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring

buffer

userspace

kernel

Linux services a softirq

1) at the end of hardware interrupt processing, in the context of
the currently scheduled process

2) through ksoftirqd thread (a per core kernel thread)

time

Scheduled task/process

wordcount
interrupt hander

50% 50%allocated share

40% 40%actual usage 20%

ksoftirqd

14

Process

TCP/IP stack

vSwitch

NIC driver

NIC
qdisc/tc

Process is not
getting charged

Non-process
context

Process context

No Problem!

Sender Side

• Packet is enqueued in the process context

• Soft interrupt is responsible for dequeuing
and delivering it to the NIC

Sender side stack

NIC ring

buffer

userspace

kernel

Linux services the softirq

1) at the end of hardware interrupt processing, in the context of
the current scheduled process.

2) through ksoftirqd thread (a per core kernel thread)

time

Scheduled task/process

wordcount
interrupt hander

50% 50%allocated share

40% 40%actual usage 20%

ksoftirqd

Softirq processing can be charged incorrectly or not
charged at all to any container

15

Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

16

Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

16

Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim
(sysbench)

16

Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim
(sysbench) (sysbench) (sysbench) (sysbench)

Interferers
16

Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim
(sysbench) (sysbench) (sysbench) (sysbench)

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim
(sysbench)

Sender/
Receiver

=Penalty
factor

Time that victim takes when
competing with traffic

Time that victim takes when
competing with sysbench

Sender/
Receiver

Sender/
Receiver

Interferers

Interferers
16

Impact Of Network Traffic

=Penalty
factor Time that victim takes when

competing with sysbench

Time that victim takes when
competing with traffic

17

Impact Of Network Traffic

HTB is used for traffic shaping @ 5Gbps

TCP Sender

=Penalty
factor Time that victim takes when

competing with sysbench

0

0.5

1

1.5

2

2 10Pe
n

al
ty

 F
ac

to
r

Number of containers

10 flows 50 flows 100 flows

Time that victim takes when
competing with traffic

17

Impact Of Network Traffic

HTB is used for traffic shaping @ 5Gbps

TCP Sender

Higher is worse

=Penalty
factor Time that victim takes when

competing with sysbench

0

0.5

1

1.5

2

2 10Pe
n

al
ty

 F
ac

to
r

Number of containers

10 flows 50 flows 100 flows

Time that victim takes when
competing with traffic

17

Impact Of Network Traffic

HTB is used for traffic shaping @ 5Gbps

Maximum penalty factor is around 1.85

TCP Sender

Higher is worse

=Penalty
factor Time that victim takes when

competing with sysbench

0

0.5

1

1.5

2

2 10Pe
n

al
ty

 F
ac

to
r

Number of containers

10 flows 50 flows 100 flows

Time that victim takes when
competing with traffic

17

Impact Of Network Traffic

HTB is used for traffic shaping @ 5Gbps

Maximum penalty factor is around 1.85

TCP Sender

Higher is worse

=Penalty
factor Time that victim takes when

competing with sysbench

0

0.5

1

1.5

2

2 10Pe
n

al
ty

 F
ac

to
r

Number of containers

10 flows 50 flows 100 flows

Time that victim takes when
competing with traffic

Look at our paper for
the impact of UDP traffic

17

Receiver Side

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

NIC ring

buffer

userspace

kernel

18

Receiver Side

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

• Receiver side problem is much worse than
the sender

NIC ring

buffer

userspace

kernel

18

Receiver Side

Process

TCP/IP stack

vSwitch

NIC driver

NIC

Process context

Receiver stack

Non-process
and interrupt

context
qdisc/tc

• Receiver side problem is much worse than
the sender

• Packet is processed in non-process context
until copied to application’s socket

NIC ring

buffer

userspace

kernel

18

Impact Of Network Traffic

TCP Receiver

=Penalty
factor Time that victim takes when

competing with sysbench

0
1
2
3
4
5
6
7

2 10

Pe
n

al
ty

 F
ac

to
r

Number of containers

10 flows 50 flows 100 flows

Time that victim takes when
competing with traffic

19

Impact Of Network Traffic

TCP Receiver

Higher is worse

=Penalty
factor Time that victim takes when

competing with sysbench

0
1
2
3
4
5
6
7

2 10

Pe
n

al
ty

 F
ac

to
r

Number of containers

10 flows 50 flows 100 flows

Time that victim takes when
competing with traffic

19

Impact Of Network Traffic

Maximum penalty factor is around 6

TCP Receiver

Higher is worse

=Penalty
factor Time that victim takes when

competing with sysbench

0
1
2
3
4
5
6
7

2 10

Pe
n

al
ty

 F
ac

to
r

Number of containers

10 flows 50 flows 100 flows

Time that victim takes when
competing with traffic

19

Scenarios When Isolation Breaks

Compute intensive

vs

Network intensive

OS

20

Scenarios When Isolation Breaks

Low network workload

vs

High network workload

Compute intensive

vs

Network intensive

OS OS

20

Scenarios When Isolation Breaks

Low network workload

vs

High network workload

Compute intensive

vs

Network intensive

Network intensive

vs

Network intensive with
kernel bypass

OS OS OS

20

Iron

A scheme that ensures and enforces accounting of network-
based CPU consumed in the kernel on the behalf of a container.

21

• How and by how much is isolation broken

• Iron’s design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement

• Integration with Linux scheduler

• Hardware-based packet dropping

• Evaluation
• Controlled workload

• Realistic workload

Outline

22

Network Call Stack – Backgound

NIC
interrupt

23

Network Call Stack – Backgound

do_IRQ

netif_receive_skb

ip_rcv …

napi_schedule

do_softirq

net_rx_action

NIC
interrupt

Kernel IRQ Handler Driver interrupt
Handler

Softirq Handler NAPI poll
Handler

Network stack
Handlers

23

Network Call Stack – Backgound

do_IRQ

netif_receive_skb

ip_rcv …

napi_schedule

do_softirq

net_rx_action

netif_receive_skb

ip_rcv …

NIC
interrupt

Kernel IRQ Handler Driver interrupt
Handler

Softirq Handler NAPI poll
Handler

Network stack
Handlers

23

Network Call Stack – Backgound

do_IRQ

netif_receive_skb

ip_rcv …

napi_schedule

do_softirq

net_rx_action

netif_receive_skb

ip_rcv …

NIC
interrupt

Kernel IRQ Handler Driver interrupt
Handler

Softirq Handler NAPI poll
Handler

Network stack
Handlers

23

Iron – Accounting

Receiver stack

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

25

Iron – Accounting

run

Receiver stack

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

25

Iron – Accounting

run

start_time = localtime()

Receiver stack

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

end_time = localtime() 25

Iron – Accounting

• Measuring time difference is non-trivial
• Kernel is preemptable

• Function in the call stack can be interrupted at any time

run

interrupted

start_time = localtime()

Receiver stack

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

end_time = localtime() 25

Iron – Accounting

• Measuring time difference is non-trivial
• Kernel is preemptable

• Function in the call stack can be interrupted at any time

run

run

interrupted

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

Receiver stack

26

Iron – Accounting

• Measuring time difference is non-trivial
• Kernel is preemptable

• Function in the call stack can be interrupted at any time

run

run

interrupted

start_time = cumtime + (localtime() – swaptime)

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

Receiver stack

26

Iron – Accounting

• Measuring time difference is non-trivial
• Kernel is preemptable

• Function in the call stack can be interrupted at any time

run

run

interrupted

start_time = cumtime + (localtime() – swaptime)

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

cumulative execution time

Receiver stack

26

Iron – Accounting

• Measuring time difference is non-trivial
• Kernel is preemptable

• Function in the call stack can be interrupted at any time

run

run

interrupted

start_time = cumtime + (localtime() – swaptime)

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

cumulative execution time

last swapped in

Receiver stack

26

Iron – Accounting

• Measuring time difference is non-trivial
• Kernel is preemptable

• Function in the call stack can be interrupted at any time

run

run

interrupted

start_time = cumtime + (localtime() – swaptime)

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

end_time = cumtime + (localtime() – swaptime)

cumulative execution time

last swapped in

Receiver stack

26

Iron – Accounting

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

NET_RX_SOFTIRQ

Receiver stack

27

Iron – Accounting

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

NET_RX_SOFTIRQ

Receiver stack

27

Iron – Accounting

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

NET_RX_SOFTIRQ

𝑃𝑖 = 𝑝𝑒𝑟_𝑝𝑘𝑡_𝑐𝑜𝑠𝑡

Receiver stack

27

𝑝𝑘𝑡𝑐𝑜𝑠𝑡𝑖 = 𝑃𝑖

Iron – Accounting

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

NET_RX_SOFTIRQ

𝑃𝑖 =

𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑠𝑡

𝑝𝑒𝑟_𝑝𝑘𝑡_𝑐𝑜𝑠𝑡

Receiver stack

27

𝑝𝑘𝑡𝑐𝑜𝑠𝑡𝑖 = 𝑃𝑖

Iron – Accounting

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

NET_RX_SOFTIRQ 𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑠𝑡

𝑝𝑘𝑡𝑐𝑜𝑠𝑡𝑖 = 𝑃𝑖 +
𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑠𝑡

|𝑃|

𝑃𝑖 = 𝑝𝑒𝑟_𝑝𝑘𝑡_𝑐𝑜𝑠𝑡

Receiver stack

28

Iron – Accounting

net_rx_action

do_softirq

netif_receive_skb

ip_rcv

…

NET_RX_SOFTIRQ

𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑠𝑡 = 𝑑𝑜_𝑠𝑜𝑓𝑡𝑖𝑟𝑞_𝑐𝑜𝑠𝑡 −෍𝑆𝑖 ∗
𝑆𝑅𝑋
σ𝑆𝑖

𝑝𝑘𝑡𝑐𝑜𝑠𝑡𝑖 = 𝑃𝑖 +
𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑠𝑡

|𝑃|

HI, TX, RX, TIMER, SCSI & TASKLET

cost of all the softirqs

𝑃𝑖 = 𝑝𝑒𝑟_𝑝𝑘𝑡_𝑐𝑜𝑠𝑡

Receiver stack

29

Iron – Accounting

net_tx_action

do_softirq

qdisc_run

dequeue_skb

…

NET_TX_SOFTIRQ

Transmitter stack

30

Iron – Accounting

net_tx_action

do_softirq

qdisc_run

dequeue_skb

…

NET_TX_SOFTIRQ

Transmitter stack

• Linux batches packets for transmission

30

Iron – Accounting

net_tx_action

do_softirq

qdisc_run

dequeue_skb

…

NET_TX_SOFTIRQ

Transmitter stack

• Linux batches packets for transmission

batch

30

Iron – Accounting

net_tx_action

do_softirq

qdisc_run

dequeue_skb

…

NET_TX_SOFTIRQ

Transmitter stack

• Linux batches packets for transmission

• We measure the cost of the batch and charge each
packet within the batch an equal share

batch 𝑝𝑘𝑡𝑐𝑜𝑠𝑡 =
𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑠𝑡

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒

30

Iron – Accounting

net_tx_action

do_softirq

qdisc_run

dequeue_skb

…

NET_TX_SOFTIRQ

Transmitter stack

• Linux batches packets for transmission

• We measure the cost of the batch and charge each
packet within the batch an equal share

• To identify the container to charge at dequeue
• We encode the container information in the skb while

enqueueing the packet

batch 𝑝𝑘𝑡𝑐𝑜𝑠𝑡 =
𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑠𝑡

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒

30

• How and by how much is isolation broken

• Iron’s Design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement

• Integration with Linux scheduler

• Hardware-based packet dropping

• Evaluation
• Controlled workload

• Realistic workload

Outline

31

Iron – Enforcement
Scheduler Integration

• Return the accounted time to the container which was incorrectly
charged

time

wordcount

Interrupt handler

32

Iron – Enforcement
Scheduler Integration

• Return the accounted time to the container which was incorrectly
charged

time

wordcount

Interrupt handler

32

Iron – Enforcement
Scheduler Integration

• Return the accounted time to the container which was incorrectly
charged

time

wordcount

Interrupt handler

Return this time
to wordcount

32

Iron – Enforcement
Scheduler Integration

• Return the accounted time to the container which was incorrectly
charged

• Charge the accounted time to the container which was responsible
for the network traffic

time

wordcount

Interrupt handler

Return this time
to wordcount

32

Iron – Enforcement
Scheduler Integration

• Return the accounted time to the container which was incorrectly
charged

• Charge the accounted time to the container which was responsible
for the network traffic

time

wordcount

Interrupt handler

Return this time
to wordcount

charge this time
to TeraSort

32

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

Scheduler Integration

33

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

quota

Scheduler Integration

33

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

running_time

quota

Scheduler Integration

33

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

running_time

quota

period

Scheduler Integration

33

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

running_time

quota

period

Scheduler Integration

At the end of the period,
running_time is refilled by quota.

33

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

running_time

quota

period

Scheduler Integration

At the end of the period,
running_time is refilled by quota.

33

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

Scheduler Integration

running_time

34

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

task on each core borrows time
slices from the global scheduler

Container

task

Core 1

Scheduler Integration

local_running _time

running_time

34

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

task on each core borrows time
slices from the global scheduler

Container

task

Core 1

Scheduler Integration

local_running _time

running_time

34

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

Container

task

Core 1

Scheduler Integration

gained
running_time

local_running _time

35

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

Container

task

Core 1

Scheduler Integration

gained
running_time

local_running _time

Tracks the time container
should get back

35

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

Container

task

Core 1

Scheduler Integration

additional_cpu_usage

gained
running_time

local_running _time

Tracks the time container
should get back

35

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

Container

task

Core 1

Scheduler Integration

additional_cpu_usage

gained

< 0; not charged
> 0; charged incorrectly

running_time

local_running _time

Tracks the time container
should get back

35

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

Container

task

Core 1

Scheduler Integration

additional_cpu_usage

gained

< 0; not charged
> 0; charged incorrectly

running_time

local_running _time

Tracks the time container
should get back

35

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

Container

task

Core 1

Scheduler Integration

gained
running_time

additional_cpu_usage < 0; not charged
> 0; charged incorrectly

local_running _time

Tracks the time container
should get back

36

Iron – Enforcement

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

Container

task

Core 1

Scheduler Integration

Tracks the time container
should get back

gained
running_time

additional_cpu_usage < 0; not charged
> 0; charged incorrectly

local_running _time

37

Iron – Enforcement
Scheduler Integration

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

runtime

quota

period

per-container
state

Container

task

Core 1

rt_remain = min (runtime, min_amount)

gained

additional_cpu_usage

Throttling a sender ensures isolation! Because throttled
sender (runtime < 0) cannot generate outgoing traffic.

38

Iron – Enforcement
Scheduler Integration

Reuse infrastructure from cgroup and Linux scheduler

Global
Scheduler

runtime

quota

period

per-container
state

Container

task

Core 1

rt_remain = min (runtime, min_amount)

gained

additional_cpu_usage

Throttling a sender ensures isolation! Because throttled
sender (runtime < 0) cannot generate outgoing traffic.

If the receiver is throttled, incoming traffic can still arrive
and consume CPU.

38

• How and by how much is isolation broken

• Iron’s Design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement

• Integration with Linux scheduler

• Hardware-based packet dropping

• Evaluation
• Controlled workload

• Realistic workload

Outline

39

Iron – Enforcement
Dropping Packets

Con1

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

NIC ring

buffer

userspace

kernel

Con2

Modifies the Linux’s polling mechanism (NAPI)
• Assigns a queue (ring buffer) to a container

40

Iron – Enforcement
Dropping Packets

Con1

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

NIC ring

buffer

userspace

kernel

Con2

Modifies the Linux’s polling mechanism (NAPI)
• Assigns a queue (ring buffer) to a container
• Iron strips the throttled queue from the polling list

40

Iron – Enforcement
Dropping Packets

Con1

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

NIC ring

buffer

userspace

kernel

Con2

Modifies the Linux’s polling mechanism (NAPI)
• Assigns a queue (ring buffer) to a container
• Iron strips the throttled queue from the polling list

• From kernel’s point of view, there are no more interrupts –
no packets

40

Iron – Enforcement
Dropping Packets

Con1

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

NIC ring

buffer

userspace

kernel

Con2

Modifies the Linux’s polling mechanism (NAPI)
• Assigns a queue (ring buffer) to a container
• Iron strips the throttled queue from the polling list

• From kernel’s point of view, there are no more interrupts –
no packets

• From NIC’s point of view, kernel is busy and is not polling
packets from the queue, so it stays in the polling mode.

40

Iron – Enforcement
Dropping Packets

Con1

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

NIC ring

buffer

userspace

kernel

Con2

Modifies the Linux’s polling mechanism (NAPI)
• Assigns a queue (ring buffer) to a container
• Iron strips the throttled queue from the polling list

• From kernel’s point of view, there are no more interrupts –
no packets

• From NIC’s point of view, kernel is busy and is not polling
packets from the queue, so it stays in the polling mode.

• If a new packet arrives and the ring buffer is full, it gets
dropped

40

Iron – Enforcement
Dropping Packets

Con1

TCP/IP stack

vSwitch

NIC driver

NIC

Receiver stack

qdisc/tc

NIC ring

buffer

userspace

kernel

Con2

Modifies the Linux’s polling mechanism (NAPI)
• Assigns a queue (ring buffer) to a container
• Iron strips the throttled queue from the polling list

• From kernel’s point of view, there are no more interrupts –
no packets

• From NIC’s point of view, kernel is busy and is not polling
packets from the queue, so it stays in the polling mode.

• If a new packet arrives and the ring buffer is full, it gets
dropped

dropped
40

• How and by how much is isolation broken

• Iron’s design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement

• Integration with Linux scheduler

• Hardware-based packet dropping

• Evaluation
• Controlled workload

• Realistic workload

Outline

41

Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim
(sysbench) (sysbench) (sysbench) (sysbench)

Interferers
42

Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim
(sysbench) (sysbench) (sysbench) (sysbench)

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim
(sysbench)

Sender/
Receiver

Sender/
Receiver

Sender/
Receiver

Interferers

Interferers
42

Experiment Setup

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim
(sysbench) (sysbench) (sysbench) (sysbench)

Container 1 Container 2 Container 3 Container N

Core

Q = Period/N Q = Period/N Q = Period/N Q = Period/N

Victim
(sysbench)

Sender/
Receiver

=Penalty
factor

Time that victim takes when
competing with traffic

Time that victim takes when
competing with sysbench

Sender/
Receiver

Sender/
Receiver

Interferers

Interferers
42

2 containers per core

TCP Sender

Sender Interference
With Iron

Penalty
factor Time that victim takes when

competing with sysbench

=
Time that victim takes when
competing with traffic

Traffic rate (Gbps)

Pe
n

al
ty

 F
ac

to
r

0 1 2 3 4 5 6

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

43

2 containers per core

Penalty factor remains below 1.04,
significant decrease from 1.85

TCP Sender

Sender Interference
With Iron

Penalty
factor Time that victim takes when

competing with sysbench

=
Time that victim takes when
competing with traffic

Traffic rate (Gbps)

Pe
n

al
ty

 F
ac

to
r

0 1 2 3 4 5 6

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

43

2 containers per core

Penalty factor remains below 1.04,
significant decrease from 1.85

TCP Sender UDP Sender

Sender Interference
With Iron

Penalty
factor Time that victim takes when

competing with sysbench

=
Time that victim takes when
competing with traffic

Penalty factor remains below 1.04,
significant decrease from 1.18

Traffic rate (Gbps)

Pe
n

al
ty

 F
ac

to
r

Traffic rate (Gbps)

Pe
n

al
ty

 F
ac

to
r

0 1 2 3 4 5 6

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

1.10
1.05

1
0.95

0.9
0.85

0.8
0.75

0.7
0 1 2 3 4 5 6

43

Receiver Interference With
Iron

Penalty
factor

Time that victim takes when
competing with traffic

Time that victim takes when
competing with sysbench

=

44

Receiver Interference With
Iron

TCP traffic

Penalty
factor

Time that victim takes when
competing with traffic

Time that victim takes when
competing with sysbench

=

44

Receiver Interference With
Iron

TCP traffic

Penalty
factor

Time that victim takes when
competing with traffic

Time that victim takes when
competing with sysbench

=

UDP traffic

44

Receiver Interference With
Iron

TCP traffic

Penalty factor never exceeds 1.05, significant decrease from 6 for TCP and 4.45 for UDP

Penalty
factor

Time that victim takes when
competing with traffic

Time that victim takes when
competing with sysbench

=

UDP traffic

44

• How and by how much is isolation broken

• Iron’s Design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement

• Integration with Linux scheduler

• Hardware-based packet dropping

• Evaluation
• Controlled workload

• Realistic workload

Outline

45

Impact on Big Data Applications

Setup
• 48 containers spread over 6 machines
• Each job runs over 24 containers

46

Impact on Big Data Applications

Setup

• 48 containers spread over 6 machines

• Each job runs over 24 containers

MapReduce jobs as victim:

• wordcount: counts word frequency

• pi: computes the value of pi

• grep: searches for a given word

Trace based Interferer:

• Shuffle phase of TeraSort job with

115GB input file

46

Impact on Big Data Applications

Setup

• 48 containers spread over 6 machines

• Each job runs over 24 containers

MapReduce jobs as victim:

• wordcount: counts word frequency

• pi: computes the value of pi

• grep: searches for a given word

Trace based Interferer:

• Shuffle phase of TeraSort job with

115GB input file

46

Impact on Big Data Applications

Penalty factor never exceeds 1.04

Setup

• 48 containers spread over 6 machines

• Each job runs over 24 containers

MapReduce jobs as victim:

• wordcount: counts word frequency

• pi: computes the value of pi

• grep: searches for a given word

Trace based Interferer:

• Shuffle phase of TeraSort job with

115GB input file

46

Summary

• Evaluated the interference caused by network-based containers.

• Provided hardened isolation for network-based processing in
containerized environment.

• Ensures accurate accounting of the time spent processing network
traffic in softirq.

• Integrated with Linux scheduler with minimal changes.

• Novel packet dropping mechanism to limit the interference.

47

