
PASTE: A Network Programming Interface
for Non-Volatile Main Memory
Michio Honda (NEC Laboratories Europe)

 Giuseppe Lettieri (Università di Pisa)
Lars Eggert and Douglas Santry (NetApp)

USENIX NSDI 2018

Review: Memory Hierarchy

Slow, block-oriented persistence
CPU

Caches

HDD / SSD
Block access w/
system calls

Byte access w/
load/store

100-1000s us

70 ns

5-50 ns

Main Memory

Review: Memory Hierarchy

Fast, byte-addressable persistence

CPU
Caches

Block access w/
system calls

Byte access w/
load/store

100-1000s us

70 ns

5-50 ns

-1000s ns
Main Memory

HDD / SSD

Networking is faster than disks/SSDs

1.2KB durable write over TCP/HTTP

Client Server SSD

Syscall, PCIe bus,
physical media

Cables, NICs, TCP/IP,
socket API

23us 1300us

Networking is slower than NVMM

1.2KB durable write over TCP/HTTP

23us 2us

Client Server NVMM

Memcpy, memory bus,
physical media

Cables, NICs, TCP/IP,
socket API

Networking is slower than NVMM

1.2KB durable write over TCP/HTTP

Client Server NVMM

Memcpy, memory bus,
physical media

Cables, NICs, TCP/IP,
socket API

Client

Client

nevts = epoll_wait(fds)
for (i =0; i < nevts; i++) {
 read(fds[i], buf);
 ...
 memcpy(nvmm, buf);
 ...
 write(fds[i], reply)
}

Innovations at both stacks

MegaPipe [OSDI’12]

Seastar
mTCP [NSDI’14]

IX [OSDI’14]

Stackmap [ATC’16]

NVTree [FAST’15]

NVWal [ASPLOS’16]

NOVA [FAST’16]

Decibel [NSDI’17]

LSNVMM [ATC’17]

Network stack Storage stack

Stacks are isolated

MegaPipe [OSDI’12]

Seastar
mTCP [NSDI’14]

IX [OSDI’14]

Stackmap [ATC’16]

NVTree [FAST’15]

NVWal [ASPLOS’16]

NOVA [FAST’16]

Decibel [NSDI’17]

LSNVMM [ATC’17]

Network stack Storage stackCosts of
moving data

Bridging the gap

MegaPipe [OSDI’12]

Seastar
mTCP [NSDI’14]

IX [OSDI’14]

Stackmap [ATC’16]

NVTree [FAST’15]

NVWal [ASPLOS’16]

NOVA [FAST’16]

Decibel [NSDI’17]

LSNVMM [ATC’17]

Network stack Storage stack

PASTE

PASTE Design Goals
● Durable zero copy

○ DMA to NVMM
● Selective persistence

○ Exploit modern NIC’s DMA to L3 cache
● Persistent data structures

○ Indexed, named packet buffers backed fy a file
● Generality and safety

○ TCP/IP in the kernel and netmap API
● Best practices from modern network stacks

○ Run-to-completion, blocking, busy-polling, batching etc

PASTE in Action

20

Pring
[7]

App thread

slot [0]

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

Ze
ro

 c
op

y

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

21
22

23 24
25
26

27 [0]
[4]
[8]

Pbufs

PASTE in Action

20

Pring
[7]

App thread

slot [0]

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

Ze
ro

 c
op

y

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

21
22

23 24
25
26

27 [0]
[4]
[8]

Pbufs

PASTE in Action

● poll() system call

20

Pring
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

Ze
ro

 c
op

y

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

21
22

23 24
25
26

27 [0]
[4]
[8]

Pbufs

PASTE in Action

● poll() system call
○ Got 6 in-order TCP

segments

20

Pring
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

Ze
ro

 c
op

y

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

21
22

23 24
25
26

27 [0]
[4]
[8]

Pbufs

PASTE in Action

● poll() system call
○ They are set to Pring

slots

0

Pring
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

Ze
ro

 c
op

y

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

1
2

3 4
5
6

27 [0]
[4]
[8]

tail

Pbufs

PASTE in Action

● Return from poll()

0

Pring
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

Ze
ro

 c
op

y

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

1
2

3 4
5
6

27 [0]
[4]
[8]

tail

Pbufs

PASTE in Action

0

Pring
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP
2. Read data on Pring

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

1
2

3 4
5
6

27 [0]
[4]
[8]

tail

Ze
ro

 c
op

y

Pbufs

PASTE in Action

● flush Pbuf data from
CPU cache to DIMM
○ clflush(opt) instruction

0

Pring
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP
2. Read data on Pring
3. Flush Pbuf(s)

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

1
2

3 4
5
6

27 [0]
[4]
[8]

tail

Ze
ro

 c
op

y

Pbufs

PASTE in Action

● Pbuf is persistent
data representation
○ Base address is static

i.e., file (/mnt/pm/pp)
○ Buffers can be

recovered after reboot
0

Pring
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP
2. Read data on Pring
3. Flush Pbuf(s)
4. Flush Plog entry(ies)

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

1
2

3 4
5
6

27 [0]
[4]
[8]

tail

Ze
ro

 c
op

y 1 12096

Pbufs

PASTE in Action

● Prevent the kernel
from recycling the
buffer

0

Pring
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP
2. Read data on Pring
3. Flush Pbuf(s)
4. Flush Plog entry(ies)
5. Swap out Pbuf(s)

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

8
2

3 4
5
6

27 [0]
[4]
[8]

tail

Ze
ro

 c
op

y 1 12096

Pbufs

PASTE in Action

● Same for Pbuf 2 and 6

0

Pring
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP
2. Read data on Pring
3. Flush Pbuf(s)
4. Flush Plog entry(ies)
5. Swap out Pbuf(s)

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

user
kernel

cur
Ppool (shared memory)
/mnt/pm/pp

8
9

3 4
5
10

27 [0]
[4]
[8]

tail

Ze
ro

 c
op

y 1 12096
2
6

768
987

96
96

Pbufs

PASTE in Action

● Advance cur
○ Return buffers in slot

0-6 to the kernel at
next poll()

App thread

1. Run NIC I/O and TCP/IP
2. Read data on Pring
3. Flush Pbuf(s)
4. Flush Plog entry(ies)
5. Swap out Pbuf(s)
6. Update Pring

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

user
kernelPpool (shared memory)

/mnt/pm/pp

[0]
[4]
[8]

1 12096

Ze
ro

 c
op

y

2
6

768
987

96
96

0

Pring
[7]slot [0]

8
9

3 4
5
10

27 tail
cur

Pbufs

PASTE in Action

App thread

1. Run NIC I/O and TCP/IP
2. Read data on Pring
3. Flush Pbuf(s)
4. Flush Plog entry(ies)
5. Swap out Pbuf(s)
6. Update Pring

NIC

TCP/IP

File system
/mnt/pm

lenoffpbuf

Plog
/mnt/pm/plog

user
kernelPpool (shared memory)

/mnt/pm/pp

[0]
[4]
[8]

1 12096

Ze
ro

 c
op

y

2
6

768
987

96
96

0

Pring
[7]slot [0]

8
9

3 4
5
10

27 tail
cur

Pbufs

Write-Ahead Logs

PASTE in Action

● We can organize various
data structures in Plog

App thread

1. Run NIC I/O and TCP/IP
2. Read data on Pring
3. Flush Pbuf(s)
4. Flush Plog entry(ies)
5. Swap out Pbuf(s)
6. Update Pring

NIC

TCP/IP

File system
/mnt/pm

Ppool (shared memory)
/mnt/pm/pp

[0]
[4]
[8]

Ze
ro

 c
op

y

0

Pring
[7]slot [0]

8
9

3 4
5
10

27 tail
cur

Pbufs

53

0 5 7

(1, 96, 120)
(2, 96, 987)
(6, 96, 512)

Plog
/mnt/pm/plog

user
kernel

B+tree

Evaluation

1. How does PASTE outperform existing systems?
2. Is PASTE applicable to existing applications?
3. Is PASTE useful for systems other than file/DB storage?

How does PASTE outperform existing systems?

WAL B+tree (all writes)

64B

1280B

What if we use more
complex data structures?

How does PASTE outperform existing systems?

WAL B+tree (all writes)

64B

1280B

Is PASTE applicable to existing applications?

● Redis

YCSB (read mostly) YCSB (update heavy)

Is PASTE useful for systems other than DB/file
storage?
● Packet logging prior to forwarding

○ Fault-tolerant middlebox [Sigcomm’15]

○ Traffic recording
● Extend mSwitch [SOSR’15]

○ Scalable NFV backend switch

Conclusion

● PASTE is a network programming interface that:
○ Enables durable zero copy to NVMM
○ Helps apps organize persistent data structures on NVMM
○ Lets apps use TCP/IP and be protected
○ Offers high-performance network stack even w/o NVMM

https://github.com/luigirizzo/netmap/tree/paste
micchie@sfc.wide.ad.jp or @michioh

Multicore Scalability

● WAL throughput

Further Opportunity with Co-designed Stacks

● What if we use higher access latency NVMM?
○ e.g., 3D-Xpoint

● Overlap flushes and processing with clflushopt and
mfence before system call (triggers packet I/O)
○ See the paper for results

Systemcall timeclflushopt mfence Systemcall

Receive new
requests

Send
responsesWait for

flushes done

Examine
request clflushopt

Examine
request

Experiment Setup

● Intel Xeon E5-2640v4 (2.4 Ghz)
● HPE 8GB NVDIMM (NVDIMM-N)
● Intel X540 10 GbE NIC
● Comparison

○ Linux and Stackmap [ATC’15] (current state-of-the art)
○ Fair to use the same kernel TCP/IP implementation

