

SnailTrail

Generalizing Critical Paths for Online Analysis of Distributed Dataflows

Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki Kalavri, Desislava Dimitrova, Sebastian Wicki, Zaheer Chothia, and Timothy Roscoe

Supported by

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

SnailTrail: Diagnosing latency issues in dataflows *"Where is the latency bottleneck in my computation?"*

SnailTrail works online with minimal instrumentation

Example 1: Metrics in Flink's dashboard

Example 2: Task Scheduling in Spark

Spark

The real-world is more complex

Many tasks, activities, operators, dependencies

Long-running, dynamic workloads

Bottlenecks not isolated

Credits: Frank McSherry, "Tracking progress in timely dataflow"

Conventional profiling can indicate wrong bottleneck

Conventional profiling can indicate wrong bottleneck

A quick review of critical path analysis

The program activity graph

The program activity graph

The program activity graph

Classical critical path analysis

What is the equivalent of a critical path for continuously running, distributed streaming applications, with potentially **unbounded** input?

There might be no "job end"

The program activity graph and critical paths change continuously

Profiling information can quickly become stale

Online critical path analysis

SnailTrail: Online analysis of trace windows

Program activity graph window

Sampling critical paths misses critical activities

We **rank activities** across all critical paths to capture their relative importance.

Intuition: The more critical paths go through an activity, the more critical it might be

Counting over enumerating

The Critical Participation metric

Fraction of an edge's time contribution across all critical paths

SnailTrail in action

Interpreting critical participation-based summaries

SnailTrail

Stream of tuples:

(Activity type, Operator, Worker, ..., Critical participation)

Examples:

Activity type bottleneck analysis Operator bottleneck analysis

(More in the paper!)

Activity type bottleneck analysis (Spark)

Apache Spark: Yahoo! Streaming Benchmark, 16 workers, 8s windows

Operator bottleneck analysis (Flink)

Apache Flink: Dhalion WordCount Benchmark, 10 workers, 1s windows

SnailTrail performance

Low instrumentation overhead

Spark, TensorFlow No observed overhead Flink, Timely ~10% overhead compared to

logging disabled

High throughput 1.2 million events/s 8 workers Always online 1s of traces in 6ms (100x) 256s of traces in < 25s (10x)

SnailTrail on Intel Xeon E5-4640, 2.40GHz, 32 cores, 512GiB RAM Trace: Apache Flink Sessionization, 48 workers, 1s-256s windows

Summary

Conventional profiling is misleading

CP-metric: online critical path analysis

SnailTrail: online CP-based summaries

