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SnailTrail: Diagnosing latency issues in dataflows

“Where is the latency bottleneck in my computation?”
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SnailTrail works online with minimal instrumentation
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Example 1: Metrics in Flink’s dashboard
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Example 2: Task Scheduling in Spark
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The real-world is more complex

Many tasks, activities, operators, 

dependencies

Long-running, dynamic workloads

Bottlenecks not isolated
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Credits: Frank McSherry, “Tracking progress in timely dataflow”



Conventional profiling can indicate wrong bottleneck
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A quick review of

critical path analysis
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The program activity graph
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Nodes are timestamped events:

start or end of a worker activity

u = {
timestamp: t,
worker: 2

}
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The program activity graph
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Edges represent typed 

activities

(u, v) = {
type: serialization,
operator: map,

}
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The program activity graph
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Waiting activities 

are never on a 

critical path

Activities express 

dependencies

All workers 

terminate



The program activity graph
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Which activities delay the overall execution?
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Classical critical path analysis
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What is the equivalent 

of a critical path for

continuously running,

distributed streaming

applications,

with potentially 

unbounded input?

There might be no “job end”

The program activity graph and 

critical paths change continuously

Profiling information can quickly 

become stale
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Online critical path analysis
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SnailTrail: Online analysis of trace windows

Input stream Output stream
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Program activity graph window
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Cannot enumerate

all critical paths
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Impractical!

Spark trace: 1021 critical paths 

in 10 second window



Sampling critical paths misses critical activities
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We rank activities

across all critical paths 

to capture their 

relative importance.

Intuition: The more critical paths go 

through an activity, the more critical

it might be
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Counting over enumerating
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The Critical Participation metric

Fraction of an edge’s time contribution across all critical paths

Critical paths 

through edge
Edge weight

Total number of 

critical paths Can be computed without 

critical path enumeration!
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SnailTrail in action
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Interpreting critical participation-based summaries

Stream of tuples:

(Activity type, Operator, Worker, …, Critical 

participation)

Examples:

Activity type bottleneck analysis

Operator bottleneck analysis

(More in the paper!)
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Activity type bottleneck analysis (Spark)

Apache Spark: Yahoo! Streaming Benchmark, 16 workers, 8s windows 

Conventional profiling SnailTrail, critical participation
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Operator bottleneck analysis (Flink)
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Conventional profiling SnailTrail, critical participation
Read 

sentences

Flatmap:

Split words

Count words

Increase 
flatmap’s 

parallelism!

Apache Flink: Dhalion WordCount Benchmark, 10 workers, 1s windows 
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SnailTrail performance

Low instrumentation overhead

Spark, TensorFlow

No observed overhead

Flink, Timely

~10% overhead compared to 

logging disabled

High throughput

1.2 million events/s

8 workers

Always online

1s of traces in 6ms (100x)

256s of traces in < 25s (10x)

SnailTrail on Intel Xeon E5-4640, 2.40GHz, 32 

cores, 512GiB RAM

Trace: Apache Flink Sessionization, 48 workers, 

1s-256s windows
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Summary

Conventional profiling is misleading

CP-metric: online critical path analysis

SnailTrail: online CP-based summaries
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http://strymon.systems.ethz.ch/
https://github.com/strymon-system/snailtrail

