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SnailTrail: Diagnosing latency issues in dataflows
“Where is the latency bottleneck in my computation?”
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SnailTraill works online with minimal instrumentation
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Example 1: Metrics in Flink’s dashboard
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Example 2: Task Scheduling in Spark  sparik®
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The real-world is more complex

Many tasks, activities, operators,
dependencies

Long-running, dynamic workloads

Bottlenecks not isolated

Connected Components

Output (SCC edges) ]

Credits: Frank McSherry, “Tracking progress in timely dataflow”



Conventional profiling can indicate wrong bottleneck
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Conventional profiling can indicate wrong bottleneck
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A quick review of
critical path analysis



The program activity graph
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The program activity graph
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The program activity graph
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The program activity graph

w1

W2

W3

13



Classical critical path analysis
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What Is the equivalent
of a critical path for
continuously running,
distributed streaming
applications,

with potentially
unbounded input?

There might be no “job end”

The program activity graph and
critical paths change continuously

Profiling information can quickly
become stale
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Online critical path analysis
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SnailTrail: Online analysis of trace windows
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Program activity graph window
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Sampling critical paths misses critical activities
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We rank activities
across all critical paths
to capture their
relative importance.

Intuition: The more critical paths go

through an activity, the more critical
it might be
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Counting over enumerating
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The Critical Participation metric

Fraction of an edge’s time contribution across all critical paths

Critical paths
through edge
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SnailTrall In action
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Interpreting critical participation-based summaries
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Activity type bottleneck analysis (Spark)

Apache Spark: Yahoo! Streaming Benchmark, 16 workers, 8s windows
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Operator bottleneck analysis (Flink)

Apache Flink: Dhalion WordCount Benchmark, 10 workers, 1s windows
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SnailTrail performance

Low instrumentation overhead

Spark, TensorFlow
No observed overhead
Flink, Timely
~10% overhead compared to

logging disabled
BLp v SEaEK

(-I HERON L

TensorFlow

High throughput
1.2 million events/s
8 workers
Always online
1s of traces in 6ms (100x)
256s of traces in < 25s (10x)

SnailTrail on Intel Xeon E5-4640, 2.40GHz, 32
cores, 512GiB RAM

Trace: Apache Flink Sessionization, 48 workers,
1s-256s windows
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Summary

0 b

15 0

_Shedl

Conventional proflllng 5 mlsleadlng

reference application

- .—w—.ﬁ
1 trace streams

Profiling
race generation

T ac .
Spark TensorFlow,
<¢~ Timely Dataflow, ...

SnailTrail;: online CP-based summaries



http://strymon.systems.ethz.ch/
https://github.com/strymon-system/snailtrail

