LiveTag: Sensing Human-Object Interaction Through Passive Chipless WiFi Tags

Chuhan Gao

Yilong Li and Xinyu Zhang

University of Wisconsin–Madison University of California, San Diego

Sensing Human-Object Interaction

Human activity involves interaction with physical objects

- Inferring human activities
- Using objects as command-and-control interface

Can we detect touch interaction on everyday objects?

Design Goals

LiveTag Basics

- Chipless, passive WiFi tag
- Attached to objects
- Serve as touch interfaces
- Detectable by WiFi devices

A Smart Home Enabled by LiveTag

LiveTag Basics

LiveTag Solution

• Tag design

- Creating WiFi detectable feature with resonator
- Enabling multiple touch points on the tag

• Detecting tags and touches with WiFi

- Combating multipath fading with beamforming
- Suppressing self-interference
- Robust touch detection mechanism

Creating WiFi Detectable Features

- WiFi signal PSD "modulated" by resonators
- Each resonator creates a notch at a certain frequency
- Notch frequencies serve as tag signature

Enabling Multiple Touch Points

• Resonators are "detuned" when touched

• Multiple touch points on a single tag

Optimizing Tag Structure in LiveTag

• Tag frequency response determined by resonator shape

- Optimize shape parameters to obtain desired prosperities
 - Notch center frequency
 - Deep & narrow notches
 - Independent notches

...

LiveTag Solution

• Tag design

- Creating WiFi detectable feature with resonator
- Enabling multiple touch points on the tag

• Detecting tags and touches with WiFi

- Combating multipath fading with beamforming
- Suppressing self-interference
- Robust touch detection mechanism

Extracting Tag Signature with WiFi Devices

- WiFi transmitter sends packets across all WiFi channels
- Receiver extracts CSI on each channel
- Stiches CSI to obtain complete PSD

- Multipath facing also creates deep frequency notches
- Signal travels through direct and multiple reflection paths
- Constructively/Destructively combined depending on path lengths
- Properties of fading notches depend on reflectors

- Solution: Let signal hit different reflectors
 - Fading notches varies, but tag notches persist
- Use multiple antennas to steer beam towards different directions
 - Beamforming creates directional transmission "beams"

Beam	Detected Notches
1	<i>f</i> ₁ , <i>f</i> ₂

- Solution: Let signal hit different reflectors
 - Fading notches varies, but tag notches persist
- Use multiple antennas to steer beam towards different directions
 - Beamforming creates directional transmission "beams"

Beam	Detected Notches
1	<i>f</i> ₁ , <i>f</i> ₂
2	f_1, f_2, f_3

- Solution: Let signal hit different reflectors
 - Fading notches varies, but tag notches persist
- Use multiple antennas to steer beam towards different directions
 - Beamforming creates directional transmission "beams"

Beam	Detected Notches
1	<i>f</i> ₁ , <i>f</i> ₂
2	f_1, f_2, f_3
3	<i>f</i> ₂ , <i>f</i> ₄

Notch at f_2 is consistent: We find a tag notch!

Self-Interference Cancelation

- Measure Line-of-Sight (LOS) direction
- WiFi transmitter creates a null along LOS direction

Self-Interference Cancelation

- Measure Line-of-Sight (LOS) direction
- WiFi transmitter creates a null along LOS direction

Self-Interference Cancelation

- Measure Line-of-Sight (LOS) direction
- WiFi transmitter creates a null along LOS direction

Robust Touch Detection

- WiFi receiver monitors the change at each notch position
- Constant false alarm rate detection

$$F(x) = 1 - \exp(-\frac{x^2}{4\rho^2})$$
$$P_f(V_{th}) = \exp(-\frac{V_{th}^2}{4\rho^2})$$

- Improving detection robustness
 - Multiple redundant resonators with different notch frequencies
 - Multiple sets of CSI

Implementation

- WARP software defined radios
- Linux PCs with CSI-Tool

Key Evaluation Results

Detection Accuracy

	Tag Detection	Touch Detection
Accuracy	> 95%	> 95%

• Detection Range

	Tx-to-Tag	Tag-to-Rx
Range	4-5 m	0.4-0.5 m

Control Panel for Smart Home

Water Level Detector

Summary

- Bringing remote touch sensing to passive objects
- Passive, chipless WiFi tag
- Future Work
 - Tag manufacture
 - Extending detection range

Questions?

