NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion

Ahmed El-Hassany

Petar Tsankov

Laurent Vanbever

Martin Vechev

Networked Systems ETH Zürich — seit 2015

I shouldn't be the one giving this talk...

Third year PhD student @ETH Zürich Papers at NSDI, SIGCOMM, PLDI, CAV, SOSR, ... Check him out at hassany.ps

Ahmed El-Hassany

NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion

Ahmed El-Hassany

Petar Tsankov

Laurent Vanbever

Martin Vechev

Networked Systems ETH Zürich — seit 2015

Fewer heart attack patients die when top cardiologists are away at conferences, study finds

Heart attack patients are more likely to survive when top cardiologists are not in the hospital, a new study suggests.Researchers at Harvard Medical School...

FLIP.IT

Like

Curious if the Internet is also better during IETF/NANOG/RIPE...

Fewer heart attack patients die when top cardiologists are away at conferences, study finds

Heart attack patients are more likely to survive when top cardiologists are not in the hospital, a new study suggests.Researchers at Harvard Medical School...

FLIP.IT

Like

0.0.0

Curious if the Internet is also better during IETF/NANOG/RIPE...

are away at conferences, study finds

Heart attack patients are more likely to survive when top cardiologists are not in the hospital, a new study suggests.Researchers at Harvard Medical School...

Fewer heart attack patients die when top cardiologists

...

The Internet seems to be better off during week-ends...

% of route leaks

source: Job Snijders (NTT)

"Human factors are responsible for 50% to 80% of network outages"

Juniper Networks, What's Behind Network Downtime?, 2008

https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

t_japans_internet_dark/					\$	
		vents Whitepapers	The Next Platfor	n		
Register ®	•		1 o. 11			
SS PERSONAL TECH SCIENCE	EMERGENT TECH	BOOTNOTES LE	f 8+ lin ctures C	2		
ent Japan's	Most read					
	+ Cal	Helicopter cras manoeuvres to DJI Phantom d	'avoid			
40 🖵 SHARE ▼ border gateway protocol		That terrifying ' Microsoft Skype flaw: THE TRU	e security			
net traffic into a black hole.	43	Stephen Elop a	nd the fall			
y "leaked" a big route rom Japanese giants like	T	of Nokia revisit	ed			
ectation it would be treated		BBC presenter appeal, must pa in IR35 crackdo	ay £420k			
as BGP Mon explains, that						
hit an access control list,		Microsoft's Win Workstation ad feature: No Ca	ds killer			
urs, but was so severe Affairs and ort on what went wrong.		leature. No Ca				
orting that more than						
es cookies. Find out more. Close				_	_	

In August 2017

Someone in Google fat-thumbed a Border Gateway Protocol (BGP) advertisement and sent Japanese Internet traffic into a black hole.

In August 2017

[...]

- Someone in Google fat-thumbed a Border Gateway Protocol (BGP) advertisement and sent Japanese Internet traffic into a black hole.
- Traffic from Japanese giants like NTT and KDDI was sent to Google on the expectation it would be treated as transit.

In August 2017

[...]

- Someone in Google fat-thumbed a
- Border Gateway Protocol (BGP) advertisement
- and sent Japanese Internet traffic into a black hole.
- Traffic from Japanese giants like NTT and KDDI
- was sent to Google on the expectation
- it would be treated as transit.

The outage in Japan *only* lasted a couple of hours

- but was so severe that [...] the country's
- Internal Affairs and Communications ministries
- want carriers to report on what went wrong.

Configuration synthesis addresses this problem by deriving low-level configurations from high-level requirements

Configuration synthesis addresses this problem by deriving low-level configurations from high-level requirements

Inputs

Configuration synthesis: a booming research area!

Out of high-level requirements, automatically derive...

Genesis [POPL'17] forwarding rules

Propane [SIGCOMM'16] BGP configurations PropaneAT [PLDI'17]

SyNET [CAV'17]OSPF + BGP configurationsZeppelin [SIGMETRICS'18]

Synthesizing configuration is great, but comes with challenges preventing a wide adoption

Problem #1 interpretability can produce configurations that widely differ from humanly-generated ones

interpretability

can produce configurations that widely differ from humanly-generated ones

Problem #2 continuity

can produce widely different configurations given slightly different requirements

interpretability

can produce configurations that widely differ from humanly-generated ones

continuity

can produce widely different configurations given slightly different requirements

Problem #3 deployability cannot flexibly adapt to operational requirements, requiring configuration heterogeneity

A key issue is that synthesizers do not provide operators with a fine-grained control over the synthesized configurations

Introducing...

NetComplete

NetComplete allows network operators to flexibly express their intents through configuration sketches

A configuration with "holes"

interface TenGigabitEthernet1/1/1 ip address ? ? ip ospf cost 10 < ? < 100</pre>

router ospf 100

router bgp 6500

• • • neighbor AS200 import route-map imp-p1 neighbor AS200 export route-map exp-p1 • • • ip community-list C1 permit ? ip community-list C2 permit ?

route-map imp-p1 permit 10 ? route-map exp-p1 ? 10 match community C2 route-map exp-p2 ? 20 match community C1 • • •

interface TenGigabitEthernet1/1/1 ip address ? ? ip ospf cost 10 < ? < 100</pre>

router ospf 100

?

• • •

• • •

router bgp 6500

• • • neighbor AS200 import route-map imp-p1 neighbor AS200 export route-map exp-p1

ip community-list C1 permit ?

ip community-list C2 permit ?

Holes can identify specific attributes such as:

IP addresses

link costs

BGP local preferences

interface TenGigabitEthernet1/1/1 ip address ? ? ip ospf cost 10 < ? < 100

router ospf 100

router bgp 6500

• • • neighbor AS200 import route-map imp-p1 neighbor AS200 export route-map exp-p1 • • •

- ip community-list C1 permit ?
- ip community-list C2 permit ?

route-map imp-p1 permit 10 ? route-map exp-p1 ? 10 match community C2 route-map exp-p2 ? 20 match community C1 • • •

Holes can also identify entire pieces of the configuration

NetComplete "autocompletes" the holes such that the output configuration complies with the requirements

interface TenGigabitEthernet1/1/1 ip address ? ? ip ospf cost 10 < ? < 100</pre>

router ospf 100

router bgp 6500

• • • neighbor AS200 import route-map imp-p1 neighbor AS200 export route-map exp-p1 • • • ip community-list C1 permit ? ip community-list C2 permit ?

route-map imp-p1 permit 10 ? route-map exp-p1 ? 10 match community C2 route-map exp-p2 ? 20 match community C1 • • •

interface TenGigabitEthernet1/1/1 ip address 10.0.0.1 255.255.255.254 ip ospf cost 15

router ospf 100 network 10.0.0.1 0.0.0.1 area 0.0.0.0

router bgp 6500

• • • neighbor AS200 import route-map imp-p1 neighbor AS200 export route-map exp-p1 • • •

ip community-list C1 permit 6500:1

ip community-list C2 permit 6500:2

route-map imp-p1 permit 10 set community 6500:1 set local-pref 50 route-map exp-p1 permit 10 match community C2 route-map exp-p2 deny 20 match community C1

• • •

NetComplete reduces the autocompletion problem to a constraint satisfaction problem

First

- protocol semantics
- Encode the
 in high-level requirements as a logical formula (in SMT) partial configurations

Encode the First

Then

- protocol semantics
- high-level requirements as a logical formula (in SMT) partial configurations

Use a solver (Z3) to find an assignment for the undefined configuration variables s.t. the formula evaluates to True

Main challenge: Scalability

Insight #1

network-specific heuristics

search space navigation

Insight #2

partial evaluation

search space reduction

NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion

- 1 BGP synthesis optimized encoding
- 2 OSPF synthesis counter-examples-based
- 3 Evaluation flexible, *yet* scalable

NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion

1 BGP synthesis optimized encoding

> OSPF synthesis counter-examples-based

Evaluation flexible, *yet* scalable
NetComplete autocompletes router-level BGP policies by encoding the desired BGP behavior as a logical formula

 $M \models Reqs \land BGP_{protocol} \land Policies$

$M \models Reqs \land BGP_{protocol} \land Policies$ how should the network forward traffic concrete, part of the input

 $M \models Reqs \land BGP_{protocol} \land Policies$ R1.BGP_{select}(A1,A2) ^ R1.BGP_{select}(A2,A3) \land ...

concrete, protocol semantic

how do BGP routers select routes

$M \models Reqs \land BGP_{protocol} \land Policies$

$M \models Reqs \land BGP_{protocol} \land Policies$

how routes should be modified symbolic, to be found

M ⊨ Reqs ∧ BGPprotocol ∧ Policies

R1.SetLocalPref(A2) = 200

Solving this logical formula consists in assigning each symbolic variable with a concrete value

R1.BGP_{select}(A1,A2) \land R1.BGP_{select}(A2,A3) \land ...

```
BGP_{select}(X,Y) \Leftrightarrow (X.LocalPref > Y.LocalPref) \lor ...
M \models Reqs \land BGP_{protocol} \land Policies
                                         R1.SetLocalPref(A1) = VarX
                                         R1.SetLocalPref(A2) = 200
```

R1.BGP_{select}(A1,A2) \land R1.BGP_{select}(A2,A3) \land ...

 $BGP_{select}(X,Y) \Leftrightarrow (X.LocalPref > Y.LocalPref) \lor ...$ $M \models Reqs \land BGP_{protocol} \land Policies$ R1.SetLocalPref(A1) = VarX R1.SetLocalPref(A2) = 200

 $BGP_{select}(X,Y) \Leftrightarrow (X.LocalPref > Y.LocalPref) \lor ...$ VarX := 250 — $M \models Reqs \land BGP_{protocol} \land Policies$ R1.BGP_{select}(A1,A2) \land R1.SetLocalPref(A1) = VarXR1.SetLocalPref(A2) = 200R1.BGP_{select}(A2,A3) \land ...

Naive encodings lead to complex constraints that cannot be solved in a reasonable time

Naive encodings lead to complex constraints that cannot be solved in a reasonable time

challenges

Naive encodings lead to complex constraints that cannot be solved in a reasonable time

Naive encodings lead to complex constraints that cannot be solved in a reasonable time

challenges BGP x OSPF

solutions iterative synthesis

NetComplete encodes reduced policies by relying on the requirements and the sketches

NetComplete encodes reduced policies by relying on the requirements and the sketches

Step 1Capture how announcements should propagateusing the requirements

Output

BGP propagation graph

NetComplete encodes reduced policies by relying on the requirements and the sketches

Step 1

Output **BGP** propagation graph

Step 2 via symbolic execution

partially evaluated formulas

Output

- Capture how announcements should propagate using the requirements

- Combine the graph with constraints imposed by sketches

NetComplete relies on the requirements to figure out where BGP announcements should (not) propagate

NetComplete relies on the requirements to figure out where BGP announcements should (not) propagate

Requirement

Only customers should be able to send traffic to Provider #2

NetComplete relies on the requirements to figure out where BGP announcements should (not) propagate

Requirement

Only customers should be able to send traffic to Provider #2

NetComplete computes one BGP propagation graph per equivalence class

NetComplete concretizes symbolic announcements by propagating them through the graph and sketches

NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion

BGP synthesis optimized encoding

2 OSPF synthesis counter-examples-based

> Evaluation flexible, *yet* scalable

As for BGP, Netcomplete phrases the problem of finding weights as a constraint satisfaction problem

Consider this initial configuration in which the (A,C) traffic is forwarded along the direct link

For performance reasons, the operators want to enable load-balancing

What should be the weights for this to happen?

synthesis procedure

synthesis procedure

$\forall X \in Paths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

Synthesized weights

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

This was easy, but... it does not scale

$\forall X \in Paths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

There can be an exponential number of paths between A and C...

 $\forall X \in Paths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$
To scale, NetComplete leverages **Counter-Example Guided Inductive Synthesis (CEGIS)**

An contemporary approach to synthesis where a solution is iteratively learned from counter-examples

While enumerating all paths is hard, computing shortest paths given weights is easy!

synthesis procedure

synthesis procedure

$\forall X \in SamplePaths(A,C) \setminus Reqs$

synthesis procedure

∀X ∈ SamplePaths(A,C)\Reqs Sample: { [A,B,D,C] }

synthesis procedure

$\forall X \in SamplePaths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

Synthesized weights

synthesis procedure

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

The synthesized weights are incorrect: $cost(A \rightarrow B \rightarrow C]) = 250 < cost(A \rightarrow C) = 300$

$\forall X \in SamplePaths(A,C) \setminus Reqs$

$Cost(A \rightarrow C) = Cost(A \rightarrow D \rightarrow C) < Cost(X)$

We simply add the counter example to SamplePaths and repeat the procedure

$\forall X \in SamplePaths(A,C) \setminus Reqs$ \downarrow Sample: { [A,B,D,C] } U { [A,B,C] }

The entire procedure usually converges in few iterations making it very fast in practice

BGP synthesis optimized encoding

OSPF synthesis counter-examples-based

3 Evaluation flexible, *yet* scalable

Question #1

Can NetComplete synthesize large-scale configurations?

Question #2

How does the concreteness of the sketch influence the running time?

We fully implemented NetComplete and showed its practicality

~10K lines of Python SMT-LIB v2 and Z3

OSPF, BGP, static routes as partial and concrete configs

Cisco-compatible configurations validated with actual Cisco routers

Methodology

Requirement	Sir
-------------	-----

Sketch

- 15 topologies from Topology Zoo small, medium, and large
- mple, Any, ECMP, and ordered (random) using OSPF/BGP
- Built from a fully concrete configuration from which we made a % of the variables symbolic

NetComplete synthesizes configurations for large networks in few minutes

NetComplete synthesizes configurations for large networks in few minutes

Network size

OSPF synthesis Large time (sec) ~150 nodes

settings 16 reqs, 50% symbolic, 5 repet. CEGIS enabled

Reqs.	Synthesis
type	time
Simple	140
Simple	14s
ECMP	14s 13s

Without CEGIS, OSPF synthesis is >100x slower and often timeouts

NetComplete synthesis time increases as the sketch becomes more symbolic

0

NetComplete synthesis time increases as the sketch becomes more symbolic

BGP synthesis optimized encoding

OSPF synthesis counter-examples-based

Evaluation flexible, *yet* scalable

Scales to realistic network size

- Autocompletes configurations with "holes"
- leaving the concrete parts intact
- Phrases the problem as constraints satisfaction scales using network-specific heuristics & partial evaluation
- synthesizes configurations for large network in minutes

Ahmed El-Hassany

Petar Tsankov

Laurent Vanbever

Martin Vechev

Networked Systems ETH Zürich — seit 2015

